L2-2. 多项式A除以B
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越
这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i] 是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为“0 0 0.0”。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项“-1/27”,但因其舍入后为0.0,故不输出。
输入样例:4 4 1 2 -3 1 -1 0 -1 3 2 3 1 -2 0 1输出样例:
3 2 0.3 1 0.2 0 -1.0 1 1 -3.1
【分析】
真的是单纯的多项式直接模拟除法....不过题目里有一点没说...底数都是同一个...用A的当前最高位/B的当前最高位求出当前商Q,然后对当前A减去Q*B,直到A的最高阶小于B的最高阶...因为题目没有给出数据范围...所以不知道指数最高有多少阶,所以我认为这里用map才应该是正解...
【代码】
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <cstring>
using namespace std;
map<int,double> a;
int b1[1000000];
double b2[1000000];
map<int,double> c;
int main()
{
int x,n,m;
int sa,sb;
a.clear();
c.clear();
scanf("%d",&n);
for (int i=0;i<n;i++)
{
scanf("%d",&x);
if (!i) sa=x;
scanf("%lf",&a[x]);
}
scanf("%d",&m);
for (int i=0;i<m;i++) scanf("%d%lf",&b1[i],&b2[i]);
double dis;
int ans=0;
for (int i=sa;i>=b1[0];i--)
if (a[i])
{
dis=1.0*a[i]/b2[0];
a[i]=0;
x=i-b1[0];
c[x]=dis;
for (int j=0;j<m;j++)
a[b1[j]+x]-=b2[j]*dis;
}
ans=0;
for (int i=sa;i>=0;i--)
{
c[i]=(double)((int)(c[i] * 10 + (c[i] < 0? -0.5 : 0.5)))/10;
if (c[i])
ans++;
}
if (ans==0)
{
printf("0 0 0.0\n");
}
else
{
printf("%d",ans);
for (int i=sa;i>=0;i--)
if (c[i])
printf(" %d %.1f",i,c[i]);
printf("\n");
}
ans=0;
for (int i=b1[0]-1;i>=0;i--)
{
a[i]=(double)((int)(a[i] * 10 + (a[i] < 0? -0.5 : 0.5)))/10;
if (a[i])
ans++;
}
if (ans==0)
{
printf("0 0 0.0\n");
}
else
{
printf("%d",ans);
for (int i=b1[0]-1;i>=0;i--)
if (a[i]!=0)
printf(" %d %.1f",i,a[i]);
printf("\n");
}
return 0;
}