sklearn库中fit_transform()和transform()的区别

本文探讨了sklearn库中fit_transform()和transform()的区别。fit_transform()适用于训练集,它先拟合数据,然后进行标准化;而transform()仅用于标准化,常用于已经拟合过的测试集。在数据预处理中,fit_transform()计算数据的均值和方差,这些参数在transform()中用于标准化处理。
摘要由CSDN通过智能技术生成

fit_transform()和transform()是sklearn库中常用的数据预处理函数,在《Python机器学习及实践》一书中,涉及到这两个函数的代码如下:

# 从sklearn.preprocessing导入StandardScaler
from sklearn.preprocessing import StandardScaler
# 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导
ss = StandardScaler()
# fit_transform(),先拟合数据,再标准化数据 
X_train = ss.fit_transform(X_train)
# transform(),标准化数据 
X_test = ss.transform(X_test)

看到这段代码时我十分疑惑,为什么对训练集和测试集使用不同函数进行数据预处理?fit_transform()和transform()两者存在什么差别?

我们先来看一下官方文档中对这两个函数的说明:

1、fit_transform()


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值