【start:20231106】
文章目录
- 代码仓库
- 论文资源平台(期刊+会议+专利)
- 国内论文
- 国内专利
- 国外论文(预印本)
- 国外论文
- web of science:[https://www.webofscience.com/wos/alldb/basic-search]
- google scholar:[https://scholar.google.com/]
- ResearchGate:[https://www.researchgate.net/]
- ScienceDirect:[https://www.sciencedirect.com/]
- Springer Link:[https://link.springer.com/]
- IEEE Xplore:[https://ieeexplore.ieee.org/Xplore/home.jsp]
- Sci-Hub:[https://sci-hub.wf/]
- 期刊会议精选(医学图像处理)
- 学术竞赛(数据集)
- 数据集
- 论坛问答
- 实验室与团队
- The Institute of Imaging & Computer Vision:[https://www.lfb.rwth-aachen.de/en/]
- Synthetic and Systems Biology Unit, Biological Research Centre:[http://group.szbk.u-szeged.hu/sysbiol/]
- Wiggins Lab, quantitative cell biology:[http://mtshasta.phys.washington.edu/website/software.php]
- 刘霖 (副教授) 实验室:现代光电测控及仪器实验室(MOEMIL摩米视觉实验室):[https://faculty.uestc.edu.cn/liulinMOEMIL/zh_CN/index/318174/list/index.htm]
代码仓库
github:[https://github.com/]
【link】https://github.com/
优点:经典
gitee:[https://gitee.com/]
【link】https://gitee.com/
优点:国内版github
huggingface:[https://huggingface.co/]
【link】https://huggingface.co/
优点:代码简洁、集成化高,提供多种模型的预训练权重
缺点:外网才能上,服务器不好连接
【ref】如何科学查找论文开源源代码的网站
论文资源平台(期刊+会议+专利)
国内论文
知网:[https://webvpn.xmu.edu.cn/login]
【link】https://webvpn.xmu.edu.cn/login
优点:提供硕博学位论文
X-MOL 学术平台:[https://www.x-mol.com/]
【link】https://www.x-mol.com/
简介:X-MOL学术平台,顶级期刊论文图文内容每日更新,海内外课题组信息,行业新闻文摘,化学类网址导航,化学软件和数据库导航,及更多其他内容
优点:新的文章比较全;提供各种学术热点资讯
缺点:经常重复显示相同的文章
中国科技论文在线:[http://www.paper.edu.cn/]
【link】http://www.paper.edu.cn/
优点:可以看到教授们的“动态公开评议”
国内专利
掌桥科研:[https://www.zhangqiaokeyan.com/]
【link】https://www.zhangqiaokeyan.com/
简介:中文期刊与文献,核心期刊,一站式科研服务平台
国外论文(预印本)
arxiv:[https://arxiv.org/]
【link】https://arxiv.org/
优点:都是新鲜出炉的论文
biorxiv:[https://www.biorxiv.org/]
【link】https://www.biorxiv.org/
优点:都是新鲜出炉的论文
缺点:一些论文排版乱,每一行前面都有序号,不方便划句翻译
国外论文
web of science:[https://www.webofscience.com/wos/alldb/basic-search]
【link】https://www.webofscience.com/wos/alldb/basic-search
优点:提供论文确切可用的下载链接;能直接查看论文分区;
缺点:搜索引擎的模糊搜索能力差;不含水文等未正式发行的论文;
google scholar:[https://scholar.google.com/]
【link】https://scholar.google.com/
优点:论文收录全;可指定搜索范围为综述(评论性文章);搜索引擎模糊搜索能力强
缺点:无法直接查看论文分区,不容易分辨水文
ResearchGate:[https://www.researchgate.net/]
【link】https://www.researchgate.net/
优点:网页图片排版恰到好处;可以更好地跟踪作者科研动态;查看Citations时有预览,较方便;
ScienceDirect:[https://www.sciencedirect.com/]
【link】https://www.sciencedirect.com/
优点:超链接在同一页面转跳,在线阅读文献方便
代表作:Medical Image Analysis
ELSEVIER, ScienceDirect, Polymer三者之间的关系如下: EISEVIER是出版公司,ScienceDirect是其属下的全文数据库,包含约3000种期刊, Palymer是其中的一种期刊。如果购买了ScienceDirect这个数据库的使用权限,就可以下载阅读全文。
Springer Link:[https://link.springer.com/]
【link】https://link.springer.com/
代表作:MICCAI (Medical Image Computing and Computer Assisted Intervention Society)
中文名:施普林格出版社
IEEE Xplore:[https://ieeexplore.ieee.org/Xplore/home.jsp]
【link】https://ieeexplore.ieee.org/Xplore/home.jsp
代表作:
- IEEE Transactions on Medical Imaging
- ISBI
IEEE Xplore是指电气和电子工程师学会(Institute of Electrical and Electronics Engineers)出版的学术数据库
Sci-Hub:[https://sci-hub.wf/]
【link】https://sci-hub.wf/
缺点:没有收录最新论文
期刊会议精选(医学图像处理)
综合类论文
Nat. Methods.(Nature Methods):[https://www.nature.com/nmeth/]
【link】https://www.nature.com/nmeth/
简介:Nature Methods is a science methodology journal publishing laboratory techniques and methods papers in the life sciences and areas of chemistry relevant to the life sciences.
代表作:
- Cellpose
- omnipose
- SCS(subcellular spatial transcriptomics cell segmentation)
- TrackMate 7
- CTC 2023(Cell Tracking Challenge)
Nat. Communication.(Nature Communication)
Nat. Biotechnology.(Nature Biotechnology)
代表作:Mesmer
Nat. Mach. Intell.(Nature Machine Intelligence)
代表作:physeg
nature protocols
代表作:
- An end-to-end workflow for multiplexed image processing and analysis
人工智能论文
机器学习顶级会议:NIPS,ICML( 2月),UAI(B类),AISTATS;(期刊:JMLR,ML,Trends in ML,IEEET-NN)
人工智能:IJCAI( 2月),AAAI(9月);(期刊AI)
中国计算机学会推荐国际学术会议和期刊目录
【ref】《中国计算机学会推荐国际学术会议和期刊目录- 2022》
dblp (computer science bibliography):[https://dblp.org]
全称:dblp: computer science bibliography
简介:The dblp computer science bibliography provides open bibliographic information on major computer science journals and proceedings. Originally created at the University of Trier in 1993, dblp is now operated and further developed by Schloss Dagstuhl – Leibniz Center for Informatics.
【link】https://dblp.org
PMLR (Proceedings of Machine Learning Research) :[https://proceedings.mlr.press]
【link】https://proceedings.mlr.press
全称:Proceedings of Machine Learning Research(机器学习学报研究)
优点:会给出含多篇竞赛解决方案的论文集
简介:“Proceedings of Machine Learning Research”(简称:PMLR)是一种在线的、免费公开获取的机器学习会议论文集。它收录了全球范围内机器学习领域顶级会议和研讨会的论文,包括国际机器学习大会(ICML)、神经信息处理系统大会(NIPS)、人工智能与统计学习研讨会(AISTATS)等。
代表作:
Proceedings of The Cell Segmentation Challenge in Multi-modality High-Resolution Microscopy Images(Volume 212: Competitions in Neural Information Processing Systems, 28-9 December 2022, Convention Center, New Orleans, America)
NIPS (Conference on Neural Information Processing Systems):[http://dblp.uni-trier.de/db/conf/nips/]
【link】http://dblp.uni-trier.de/db/conf/nips/
神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议
计算机视觉论文
计算机视觉和图像识别:ICCV(3月), CVPR(11月), ECCV( 3月); (期刊:IEEET-PAMI, IJCV, IEEE T-IP)
Computer Vision Foundation open access:[https://openaccess.thecvf.com/menu]
【link】https://openaccess.thecvf.com/menu
代表作:ICCV,CVPR ,WACV
医学图像处理论文
MIA(Medical Image Analysis)
TMI(IEEE Transactions on Medical Imaging)
MICCAI(Medical Image Computing and Computer Assisted Intervention Society)
【link】http://www.miccai.org/
MICCAI registered challenges:http://www.miccai.org/special-interest-groups/challenges/miccai-registered-challenges/
ISBI(IEEE International Symposium on Biomedical Imaging)
【link】https://2023.biomedicalimaging.org/en/
参考资料
【ref】机器学习论文会议整理
【ref】CCF(中国计算机学会)推荐的人工智能与模式识别领域国际期刊、会议列表x学术会议
学术竞赛(数据集)
优点:因为竞赛是明确的任务导向型的,所以给出的方案和代码一般是真实可行的
kaggle:[https://www.kaggle.com/]
【link】https://www.kaggle.com/
优点:提供代码、数据集和免费GPU;组织各种实战竞赛
Grand Challenge:[https://grand-challenge.org/challenges/]
【link】https://grand-challenge.org/challenges/
简介:Here is an overview over the medical image analysis challenges that have been hosted on Grand Challenge.
代表作:
-
keyword=nuclei
-
{2022} CoNIC 2022: Colon Nuclei Identification and Counting Challenge
-
{2020} MoNuSAC 2020: A Multi-Organ Nuclei Segmentation and Classification Challenge
-
{2018} MoNuSeg 2018: A Multi-Organ Nuclei Segmentation Challenge
- keyword=cell
- {2023} OCELOT 2023: Cell Detection from Cell-Tissue Interaction
- {2022} NeurIPS 2022 CellSeg: Weakly Supervised Cell Segmentation in Multi-modality High-Resolution Microscopy Images
- {2023} PAIP 2023: Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)
- {2021} SegPC-2021: Segmentation of Multiple Myeloma Plasma Cells Microscopic Images
MICCAI registered challenges:[http://www.miccai.org/special-interest-groups/challenges/miccai-registered-challenges/]
【link】http://www.miccai.org/special-interest-groups/challenges/miccai-registered-challenges/
简介:与临床试验开始前必须注册的方式类似,MICCAI挑战的完整设计将在挑战发生之前放在网上。设计的改变(如指标或排名方案)必须有充分的理由,并在网上正式注册(作为挑战设计的新版本)。注册挑战是迈向更高质量挑战的一大步。它不仅有可能导致更深思熟虑的挑战设计,而且还为挑战参与者提供了所有必要的信息。此外,所有更改都将对社区透明,确保提高质量控制。下面列出了已注册的挑战…
计算机视觉数据集-极市开发者平台:[https://www.cvmart.net/dataSets]
【link】https://www.cvmart.net/dataSets
简介:极市开发者平台(Extreme Mart)是极视角科技旗下AI开发者生态,为计算机视觉开发者提供一站式算法开发落地平台,同时提供大咖技术分享、社区交流、竞赛活动、数据集下载、CV课程等丰富的内容与服务。
数据集
CoNSeP(2019)
CoNSeP (Colorectal Nuclear Segmentation and Phenotypes)
【dataset】https://warwick.ac.uk/TIA/data/hovernet/
数据集的官方网址,但是不登录就无法进网页下载
【dataset】https://opendatalab.com/OpenDataLab/CoNSeP/tree/main
转向OpenDataLab的资源
@article{graham2019hover,
title={Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images},
author={Graham, Simon and Vu, Quoc Dang and Raza, Shan E Ahmed and Azam, Ayesha and Tsang, Yee Wah and Kwak, Jin Tae and Rajpoot, Nasir},
journal={Medical Image Analysis},
pages={101563},
year={2019},
publisher={Elsevier}
}
论坛问答
图像处理
image.sc Forum:[https://forum.image.sc/]
【link】https://forum.image.sc/
优点:可以找到比较实时、实际的研究难点
缺点:有一些新手提的问题比较基础且具有迷惑性
问答网站
Quora:[https://www.quora.com/]
【link】https://www.quora.com/
简介:Quora是一个问答SNS网站,由Facebook前雇员查理·切沃(Charlie Cheever)和亚当·安捷罗(Adam D’ Angelo)于2009年6月创办。
实验室与团队
The Institute of Imaging & Computer Vision:[https://www.lfb.rwth-aachen.de/en/]
【link】https://www.lfb.rwth-aachen.de/en/
简介:成像与计算机视觉研究所 (Lehrstuhl für Bildverarbeitung, LfB) 是亚琛工业大学电子工程与信息技术系的一部分。我们的研究和教学活动涵盖了整个范围的图像采集,图像处理和可视化。
研究方向:
- Image analysis, computer vision
- Feature extraction, pattern recognition
- Visualization of image data
- Multidimensional signal processing
- Medical image processing
- Biological image processing
- Industrial image processing
Synthetic and Systems Biology Unit, Biological Research Centre:[http://group.szbk.u-szeged.hu/sysbiol/]
【link】http://group.szbk.u-szeged.hu/sysbiol/
Synthetic and Systems Biology Unit
Biological Research Centre
简介:系统和合成生物学是互补的学科,旨在理解由众多分子相互作用产生的大型细胞子系统的设计原理和多层次特性。虽然最近的技术进步使快速收集数据的分子成分细胞及其相互作用,对自动化实验和计算方法的需求日益增加,分析正常细胞生理和突变和环境的表型影响扰动(如药物治疗)……
研究方向:显微图像分析和机器学习等
代表作:
- Nucleus segmentation: towards automated solutions; R Hollandi, N Moshkov, L Paavolainen etal.; Trends in Cell Biology 2022
Wiggins Lab, quantitative cell biology:[http://mtshasta.phys.washington.edu/website/software.php]
【link】http://mtshasta.phys.washington.edu/website/software.php
简介:quantitative cell biology, Physics, Bioengineering & Microbiology, University of Washington
代表作:omnipose
刘霖 (副教授) 实验室:现代光电测控及仪器实验室(MOEMIL摩米视觉实验室):[https://faculty.uestc.edu.cn/liulinMOEMIL/zh_CN/index/318174/list/index.htm]
【link】https://faculty.uestc.edu.cn/liulinMOEMIL/zh_CN/index/318174/list/index.htm
简介:实验室充分利用电子科技大学多学科、自由探索及特色化发展的综合优势,围绕复杂背景下图像检测/识别技术的科学问题和高精密AOI一体化设计的关键技术瓶颈开展基础与应用基础研究,作为“光机电软算”一体化实验室旨在探索未来光学工程、机器视觉和人工智能技术的新趋势和新方向。本实验室重点涉足镜检生物医疗检测领域,重点涉足高精密工业表观检测领域。实验室的后期发展分为两大主线,在智慧医疗主线上做到医疗设备智能化、医疗诊断远程化和医疗服务家庭化,在尖端测控主线上做到测控国产化、国产精密化和精密高端化。
研究方向:机器视觉,机器学习,深度学习,数字图像处理