GESP 四级题单(困难) • 附免费参考答案

[GESP202309 四级] 变长编码

题目描述

小明刚刚学习了三种整数编码方式:原码、反码、补码,并了解到计算机存储整数通常使用补码。但他总是觉得,生活中很少用到 2 31 − 1 2^{31}-1 2311 这么大的数,生活中常用的 0 ∼ 100 0\sim 100 0100 这种数也同样需要用 4 4 4 个字节的补码表示,太浪费了些。
热爱学习的小明通过搜索,发现了一种正整数的变长编码方式。这种编码方式的规则如下:

  1. 对于给定的正整数,首先将其表达为二进制形式。例如, ( 0 ) { 10 } = ( 0 ) { 2 } (0)_{\{10\}}=(0)_{\{2\}} (0){ 10}=(0){ 2} ( 926 ) { 10 } = ( 1110011110 ) { 2 } (926)_{\{10\}}=(1110011110)_{\{2\}} (926){ 10}=(1110011110){ 2}

  2. 将二进制数从低位到高位切分成每组 7 7 7 bit,不足 7 7 7bit 的在高位用 0 0 0 填补。例如, ( 0 ) { 2 } (0)_{\{2\}} (0){ 2} 变为 0000000 0000000 0000000 的一组, ( 1110011110 ) { 2 } (1110011110)_{\{2\}} (1110011110){ 2} 变为 0011110 0011110 0011110 0000111 0000111 0000111 的两组。

  3. 由代表低位的组开始,为其加入最高位。如果这组是最后一组,则在最高位填上 0 0 0,否则在最高位填上 1 1 1。于是, 0 0 0 的变长编码为 00000000 00000000 00000000 一个字节, 926 926 926 的变长编码为 10011110 10011110 10011110 00000111 00000111 00000111 两个字节。

这种编码方式可以用更少的字节表达比较小的数,也可以用很多的字节表达非常大的数。例如, 987654321012345678 987654321012345678 987654321012345678 的二进制为 ( 0001101   1011010   0110110   1001011   1110100   0100110   1001000   0010110   1001110 ) { 2 } (0001101 \ 1011010 \ 0110110 \ 1001011 \ 1110100 \ 0100110 \ 1001000 \ 0010110 \ 1001110)_{\{2\}} (0001101 1011010 0110110 1001011 1110100 0100110 1001000 0010110 1001110){ 2},于是它的变长编码为(十六进制表示) CE 96 C8 A6 F4 CB B6 DA 0D,共 9 9 9 个字节。

你能通过编写程序,找到一个正整数的变长编码吗?

输入格式

输入第一行,包含一个正整数 N N N。约定 0 ≤ N ≤ 1 0 18 0\le N \le 10^{18} 0N1018

输出格式

输出一行,输出 N N N 对应的变长编码的每个字节,每个字节均以 2 2 2 位十六进制表示(其中, A-F 使用大写字母表示),两个字节间以空格分隔。

样例 #1

样例输入 #1

0

样例输出 #1

00

样例 #2

样例输入 #2

926

样例输出 #2

9E 07

样例 #3

样例输入 #3

987654321012345678

样例输出 #3

CE 96 C8 A6 F4 CB B6 DA 0D

参考答案

// longCode.cpp
// 字符串、进制
#include <iostream>
using namespace std;

long long n;
string h = "0123456789ABCDEF";

void p(int i)
{
   
   
	cout << h[i/16] << h[i%16] << " ";
}

int main()
{
   
   
    // 输入
	cin >> n;
	
	// 特例
	if (n == 0)
	{
   
   
	    cout << "00";
	    return 0;
	}
	
	// 模拟
	while(n)
	{
   
   
		int k = n % 128;
		n /= 128;
		if (n > 0)
		{
   
   
		    p(k+128); // 判断是否为最高位
		}
		else
		{
   
   
		    p(k);
		}
	}
	return 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值