【深度学习】“复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究”(上)
大家好 我是寸铁👊
【深度学习】“复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究”(上)✨
喜欢的小伙伴可以点点关注 💝
前言
本次【深度学习】"复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究"分为上、中、下
三个部分,后续持续更新,感兴趣的朋友可以继续关注~
代码无偿,记得进入网站fork一下谢谢!
全部源代码地址:
github.com/Joyflower/Brid_CCN/tree/master/
随着科技的进步和深度学习技术的广泛应用,卷积神经网络(CNN)作为一种强大的图像识别工具,在复杂环境中的应用日益引起关注。特别是在鸟类多类别识别这一领域,CNN展现出了巨大的潜力和应用前景。然而,面对复杂场景下的挑战,如光照变化、背景噪声和鸟类姿态的多样性,如何设计和优化CNN模型以提高识别的准确性和鲁棒性仍然是一个重要的研究课题。
本研究旨在探索基于深度学习的卷积神经网络在鸟类多类别识别中的应用潜力,通过深入分析模型设计和性能优化的方法,以应对复杂环境带来的挑战。通过系统的实验验证和性能评估,本研究试图为解决实际应用中的识别难题提供创新的解决方案和理论支持。
数据集
数据来源及特点
在本研究中,数据集来自于官方网站(https://aistudio.baidu.com/datasetdetail/144466
),数据集包含了总计11788
个样本,涵盖了200
种不同的鸟类。每种鸟类的样本数量在40
到60
个之间不等。
为了进行进一步的分析和模型训练,我们手动地从这些数据中按照200
种鸟类进行了分类。分类后,我们将数据集按照8:2
、9:1
的比例划分为训练集和测试集,以确保训练和评估模型时的数据分布的一致性和准确性。
数据集情况如图3数据集内部分鸟类图片展示、图4数据集数据统计情况所示:
图1 数据集部分展示
图2 数据集部分展示
图3 数据集内部分鸟类图片展示
图4 数据集数据统计情况
识别任务及问题难度
本次识别任务的目标是对包含200种不同鸟类的数据集进行测试识别。由于鸟类种类繁多,而每种鸟类的样本数量相对较少,使得任务的难度较高。
为了解决这一问题,本次课程设计计划采用神经卷积网络
CNN
来训练模型。由于使用的是CPU进行模型训练,具体来说是NVIDIA GeForce RTX 3050 Ti
,如图5所示。作为开发环境,使用的是PyCharm软件,版本为2023.3.5
。
这些设定和选择旨在通过神经网络技术,利用CPU资源有效地处理并识别200
种不同鸟类,尽管每个类别的数据量有限,但希望能够达到准确的分类结果。
图5 CPU型号