Problem
Description
给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。
第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t
Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。
C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。
Sample Input
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
Sample Output
3
6
HINT
20%的数据中,m,n≤100; 40%的数据中,m,n≤1000; 100%的数据中,m,n≤10000。
Solution
树套树,外层是一个用于统计前缀和的树状数组,内层就是一个动态开节点的线段树。
这是不是主席树啊QAQ
相比于静态的区间第K小值,动态的问题唯一区别在于用树状数组维护前缀和。
这就好比,如果是对一个数列做前缀和。若不用修改,则只需要一个sum数组,sum[i] = sum[i-1] + a[i],区间[l,r]的部分和即为sum[r] - sum[l-1]。若要修改,就用一个树状数组来实现。
类比到树套树。唯一的变化在于,前一个问题中每一个单元记录了一个数,而这里记录的是一棵树。
Code
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define red(i, a, b) for(int i = (a); i >= (b); i--)
#define ll long long
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(!isdigit(c)) { if (c == '-') f = -1; c = getchar(); }
while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
const int maxn = 11111;
const int NN = maxn * 100;
struct node {
int x, y, z;
}a[maxn << 1];
int n, m, nn, N, sz = 0;
int seq[maxn], RL[maxn], RR[maxn], root[maxn], lnk[maxn << 1];
int lc[NN], rc[NN], sum[NN];
int opr[maxn << 1][4];
map <int, int> hash;
bool cmp1(node a, node b) { return a.x < b.x; }
bool cmp2(node a, node b) { return a.y < b.y; }
int lowbit(int x) { return x & (-x); }
void update(int l, int r, int& y, int v, int p) {
if (!y) y = ++sz;
sum[y] += p;
if (l == r) return;
int mid = (l + r) >> 1;
if (v <= mid) update(l, mid, lc[y], v, p);
else update(mid + 1, r, rc[y], v, p);
}
int query(int l, int r, int kth) {
int mid = (l + r) >> 1;
if (l == r) return l;
int suml = 0, sumr = 0;
rep(i, 1, RL[0]) suml += sum[lc[RL[i]]];
rep(i, 1, RR[0]) sumr += sum[lc[RR[i]]];
if (sumr - suml >= kth) {
rep(i, 1, RL[0]) RL[i] = lc[RL[i]];
rep(i, 1, RR[0]) RR[i] = lc[RR[i]];
return query(l, mid, kth);
}else {
rep(i, 1, RL[0]) RL[i] = rc[RL[i]];
rep(i, 1, RR[0]) RR[i] = rc[RR[i]];
return query(mid + 1, r, kth - sumr + suml);
}
}
int main() {
n = read(); m = read();
rep(i, 1, n) {
a[i].x = read();
a[i].y = i;
}
nn = n;
rep(i, 1, m) {
char ch = getchar();
while(ch != 'Q' && ch != 'C') ch = getchar();
if (ch == 'C') {
int pos = read(), x = read();
opr[i][0] = 0; opr[i][1] = pos; opr[i][2] = x;
a[++nn].x = x; a[nn].y = nn;
}
if (ch == 'Q') {
int ql = read(), qr = read(), kth = read();
opr[i][0] = 1; opr[i][1] = ql; opr[i][2] = qr; opr[i][3] = kth;
}
}
sort(a + 1, a + nn + 1, cmp1);
N = 1;
a[1].z = 1; lnk[1] = a[1].x; hash[a[1].x] = 1;
rep(i, 2, nn) {
a[i].z = a[i].x == a[i-1].x ? N : ++N;
lnk[N] = a[i].x;
hash[a[i].x] = N;
}
sort(a + 1, a + nn + 1, cmp2);
rep(i, 1, n) seq[i] = a[i].z;
memset(root, 0, sizeof(root));
rep(i, 1, n) {
for(int j = i; j <= n; j += lowbit(j))
update(1, N, root[j], a[i].z, 1);
}
rep(i, 1, m) {
int op = opr[i][0];
if (op == 0) {
int pos = opr[i][1], cur = opr[i][2], pre = seq[pos];
cur = hash[cur];
for(int j = pos; j <= n; j += lowbit(j)) {
update(1, N, root[j], pre, -1);
update(1, N, root[j], cur, 1);
}
seq[pos] = cur;
}else {
int ql = opr[i][1], qr = opr[i][2], kth = opr[i][3];
memset(RL, 0, sizeof(RL));
memset(RR, 0, sizeof(RR));
for(int j = ql - 1; j > 0; j -= lowbit(j)) RL[++RL[0]] = root[j];
for(int j = qr; j > 0; j -= lowbit(j)) RR[++RR[0]] = root[j];
int kc = query(1, N, kth);
printf("%d\n", lnk[kc]);
}
}
return 0;
}
尾声
数据不符合基本法!!!!行末有空格!!!!
瞬间爆炸
还要多写数据结构,但智商更迫切需要提升
Srwudi Sick Again
T_T