含泪总结,五种常见的最短路径算法

”明月如霜,好风如水,清景无限 “

  • 总结

总的来说,最短路径是图论的最常见的问题。即在一副有向图(无向图是特殊的有向图,不做考虑。记图中的结点数N ,而边数为 M,边长记为W)中找到其中两点的路径最短值。

* 基础版dijkstra

  • 复杂度 :O(n * n),分析可知遍历为n,更新为n。

  • 特点介绍:看复杂度可以知道,此算法仅仅与结点个数有关。那么当图的边数密集,是稠密图时,将会非常适合。而对于稠密图,储存方式最好是邻接矩阵。其中dijkstra算法对应的边长权值都为正数。

  • 代码关键点:

(1).定义最短路的集合,及将最短路的结点放入其中。及认为st[t] = true;

(2).从1到n遍历

(3).找到离结点1,最近的结点记为t,将放入最短路集合

(4).通过t来更新其他结点j的信息,及min(dist[j] , dist[t] + g[t][j])

  • 代码
const int N = 510;
int n , m;
int g[N][N];///存的是i到j的距离
int dist[N];///存的是1到i的最短距离
/点1开始
bool st[N];int dijkstra(){
    memset(dist , 0x3f , sizeof(dist));//两结点无路,记为无穷大
    dist[1] = 0;
    ///从未确定最短的点里,找到确定的最短路径
    for(int i = 0 ; i < n ; ++i){
        // int t = 1;//
        int t = -1;
        for(int j = 1 ; j <= n ; ++j){
            // if(!st[j] && dist[t] > dist[j])
            if(!st[j] && (t == -1 ||dist[t] > dist[j]))
                t = j;
        }
        st[t] = true;
    ///更新其他点的距离
        for(int j = 1 ; j < n ; ++j)
            dist[j] = min(dist[j] , dist[t] + g[t][j]);
    } 
    return  (dist[n] == 0x3f3f3f3f) ? -1:dist[n];
}

* 优先队列优化dijkstra

  • 复杂度 :O(m * log n),分析可知优先队列找n次最小值复杂度为n,而更新m条边的最短距离复杂度为 m * log n。

  • 特点介绍:因为发现找到离结点1,最近的结点记为t,此过程复杂度较高,因此换为小根堆(优先队列)存储,则复杂度变为O(1),而修改其中一条边的值,复杂度为O(log n )。

  • 代码关键点:和上述一样,但是因为分析算法复杂度,及为稀疏图时(边数m小),则算法复杂度低,图的存储方式用邻接链表。注意小根堆的定义方式:priority_queue<PAI , vector , greater> heap;PAI表示的是<1到结点t的距离,结点t>

记得在入队时,先将dist[j]更新,再入队

  • 代码
typedef pair<int , int> PAI;
const int N = 510;
int n , m;
int e[N] , ne[N] , h[N] , w[N], idx;///存的是i到j的距离
int dist[N];///存的是1到i的最短距离,
/点1开始
bool st[N];/有点搞不懂这个s集合
/邻接链表的存储,记得存储边长w
void add(int a, int b , int c){
    e[idx] = b ;///头插b
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}int dijkstra(){
    memset(dist , 0x3f , sizeof(dist));
    dist[1] = 0;
​
    priority_queue<PAI , vector<PAI> , greater<PAI>> heap;
    heap.push({0 , 1});
    ///从未确定最短的点里,找到确定的最短路径
    while(!heap.empty()){
        auto t = heap.top();
        heap.pop();
        int distance = t.first , vec = t.second;
        ///即必须是t 
        ///思考这里的st[vec]
        if(st[vec]) continue;//是否可以,以下放在if(!st[vec])中
        // if(!st[vec])
            for(int i = h[vec] ; i != -1 ; i = ne[i]){
                int j = e[i];//重点理解w[i]
                if(dist[j] > distance + w[i]) {
                    dist[j] = distance + w[i];
                    heap.push({dist[j] , j});
                }
            }
    }
    return  (dist[n] == 0x3f3f3f3f) ? -1:dist[n];
}

* Bellman-Ford算法

  • 复杂度 :O(m * k),遍历为m(准确为k)次,边数为m, 因此复杂度为m * k。

  • 特点介绍:当图中有负权边时,可以使用。但是最大的优势是可以限制边的数量,及找结点n到结点1在最多经过k条边的情况下的最短距离。其中因为边的存储可以是结构体,定义边的三个属性起点a,终点b,权值w。如果限制最大边数k,那么必须保证在更新结点b的距离时,保证结点a的距离是上一轮的,即:

dist[b] = min(dist[b] , backup[a] + w);
  • 代码:
const int N = 510 , M = 10010;
int n , m , k;///k是什莫意思呢限制k条边
存储方式是struct
int dist[N] , backup[N];///backup是什么作用呢struct Edge
{
    int a,b,w;
}edge[M];
​
​
int bellman_ford(){
    memset(dist , 0x3f , sizeof(dist));
    dist[1] = 0;
    for(int i = 0 ; i < k ;++i){///最多处理到第i条边
        memcpy(backup , dist , sizeof(dist));//缓冲,记住上一次循环得结果,
        for(int j = 0 ; j < m ; ++j){//边
            int a = edge[j].a , b = edge[j].b , w = edge[j].w;
            //dist[b] = min(dist[b] , dist[a] + w);
            dist[b] = min(dist[b] , backup[a] + w);
        }
    }
    return dist[n];
}
  • 代码关键点:即使有负环,某些点最短路也不是-∞,有k条边数限制:

* SPFA算法

  • 复杂度 :O(m * n),n个结点,边数为m, 因此复杂度最多m * n,最少m。

  • 特点介绍:不能有负环,负环后的结点最短路为-∞,允许有负权值的边,主要根据bellman-ford的距离更新,

dist[b] = min(dist[b] , backup[a] + w);
  • 发现b结点的距离更新和a结点有关,或者说dist[a]变小,dist[b]才会变小,有单调关系,先进先出可用队列。注意j = e[i];而w[i]表示i 到 j 的距离。st[j]表示结点j是否入队。

  • 代码:

const int N = 510;
int n , m;
int e[N] , ne[N] , h[N] , w[N], idx;///存的是i到j的距离
int dist[N];///存的是1到i的最短距离,尽量最终
/点1开始
bool st[N];/有点搞不懂这个s集合void add(int a, int b , int c){
    e[idx] = b ;///头插b
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}int spfa(){
    memset(dist , 0x3f , sizeof(dist));
    dist[1] = 0;
    queue<int> q;
    q.push(1);///点数
    st[1] = true;while(q.size()){///结点
        int t = q.front();
        q.pop();
        st[t] = false;for(int i = h[t] ; i != -1 ; i = ne[i]){///边
            int j = e[i];
            if(dist[j] > dist[t] + w[i]){
                dist[j] = dist[t] + w[i];
                if (!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return  (dist[n] == 0x3f3f3f3f) ? -1:dist[n];
}

* Floyd算法

  • 复杂度 :O(n * n * n),n个结点,从i 到 j经过点k,注意点K在外循环。

  • 特点介绍:很暴力,n^3。简单粗暴,注意初始化,i == j 时d[i][j] = 0。其中设置最大值可以从字节设置0x3f,换成较大的数 1e9。

  • 代码:

const int N = 1010;
const int INF = 1e9;int d[N][N];   //d[a][b]表示a到b的最短距离
int n , m;void print_d(){
    cout<<"d =  "<<endl;
    for(int i = 1 ; i <= n ; ++i){
        for(int j = 1 ; j <= n ; ++j){
            cout<<d[i][j]<<" ";
        }
        cout<<endl;
    }
}
void init_floyd(){
    for(int i = 1 ; i <= n ; ++i)
        for(int j = 1 ; j <= n ; ++j)
            d[i][j] = (i == j) ? 0 : INF;
    print_d();
}
int floyd(){
    for(int k = 1 ; k <= n ; ++k)
        for(int i = 1 ; i <= n ; ++i)
            for(int j = 1 ; j <= n ; ++j)
                d[i][j] = min(d[i][j] , d[i][k] +d[k][j]);
    return d[1][n];
}

源码点击阅读原文,记得点赞关注。

END

作者:不爱跑马的影迷不是好程序猿

   喜欢的话请关注点赞👇 👇👇 👇                     

公众号 : 文远的学习笔记
在这里插入图片描述

爱上层楼,浅斟低唱;酒醒何处,浮生若梦。

壹句: “C 艹 mother fucker \n”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值