函数是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用函数,函数有一个__name__属性,可以拿到函数的名字:
>>> def now():
... print('2017-5-18')
...
>>> f = now
>>> f()
2015-3-25
>>> now.__name__
'now'
>>> f.__name__
'now'
假如要增强now()函数的功能,比如:在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为”装饰器(decorator)“,本质上,decorator就是返回番薯的高阶函数;定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
log()函数,它是一个decorator,接受一个函数作为参数,并返回一个函数。这里可以借助于python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2017-5-18')
调用now()函数,不仅会运行now()函数本身,还会运行now()函数前打印一行日志:
>>> now()
call now():
2017-5-18
把@log放到now()函数的定义出,相当于执行了语句:now=log(now)
由于log()是一个装饰器,返回的是一个函数,所以说,原来的函数仍然存在,只是现在的now()指向了新的函数,于是调用now()将执行新的函数,即在log()函数中返回wrapper()函数。wrapper()函数的参数定义是(*args,**kw),因此wrapper函数可以接受任意参数的调用,在wrapper()函数内,首先打印日志,再接着调用原始的now()函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高级函数,比如,自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
三层嵌套的decorator:
@log('execute')
def now():
print('2017-5-18')
执行结果:
>>> now()
execute now():
2017-5-18
和2层嵌套的decorator的相比较,3层嵌套的效果是:
>>> now = log('execute')(now)
首先执行的是log("execute"),返回的是decorator函数,在调用返回的函数,参数是now函数,返回值最终是wrapper函数,但是经过decorator装饰之后的函数,他的__name__变成了”wrapper“:
>>> now.__name__
'wrapper'
因为返回那个wrapper()函数名字就是”wrapper“,需要把原始函数的__name__属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__=func.__name__这样的代码,python内置functools.wraps就是干这个事的,一个完整的decorator写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
编写一个decorator,可以在函数调用前后打印”begin call“和”end call“的日志:
def log(func):
def wrapper(*args, **kw):
print('begin call %s():' % func.__name__)
func(*args, **kw)
print('end call %s():' % func.__name__)
return wrapper
@log
def now():
print (time.strftime('%Y-%m-%d',time.localtime(time.time())))
now()
带参数:
def log(strorfunc):
if isinstance(strorfunc,str):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (strorfunc, func.__name__))
func(*args, **kw)
return wrapper
return decorator
else:
@functools.wraps(strorfunc)
def wrapper(*args, **kw):
print('begin call %s():' % strorfunc.__name__)
strorfunc(*args, **kw)
print('end call %s():' % strorfunc.__name__)
return wrapper
@log('execute')
def now():
print (time.strftime('%Y-%m-%d',time.localtime(time.time())))
now()
总结:
在面向对象(OOP)的设计模式中,decorator称之为装饰模式,OOP的装饰模式需要通过继承和组合来实现,而python除了支持OOP的decorator外,直接从语法层支持decorator。python中的decorator可以用函数实现(decorator可以增强函数的功能),也可以用类来实现。