python函数式编程之装饰器

本文详细介绍了Python装饰器的概念及其使用方法,包括如何通过装饰器在不修改原有函数的情况下为其添加额外的功能,例如打印日志等。此外,还展示了如何编写带有参数的装饰器,并通过实例解释了装饰器内部的工作原理。
摘要由CSDN通过智能技术生成

函数是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用函数,函数有一个__name__属性,可以拿到函数的名字:

 

>>> def now():
...     print('2017-5-18')
...
>>> f = now
>>> f()
2015-3-25

 

 

>>> now.__name__
'now'
>>> f.__name__
'now'

假如要增强now()函数的功能,比如:在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为”装饰器(decorator)“,本质上,decorator就是返回番薯的高阶函数;定义如下:

 

 

def log(func):
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

log()函数,它是一个decorator,接受一个函数作为参数,并返回一个函数。这里可以借助于python的@语法,把decorator置于函数的定义处:

 

@log
def now():
    print('2017-5-18')

 

调用now()函数,不仅会运行now()函数本身,还会运行now()函数前打印一行日志:

 

>>> now()
call now():
2017-5-18

把@log放到now()函数的定义出,相当于执行了语句:now=log(now)
由于log()是一个装饰器,返回的是一个函数,所以说,原来的函数仍然存在,只是现在的now()指向了新的函数,于是调用now()将执行新的函数,即在log()函数中返回wrapper()函数。wrapper()函数的参数定义是(*args,**kw),因此wrapper函数可以接受任意参数的调用,在wrapper()函数内,首先打印日志,再接着调用原始的now()函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高级函数,比如,自定义log的文本:

 

def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

三层嵌套的decorator:

 

@log('execute')
def now():
    print('2017-5-18')

执行结果:

 

 

>>> now()
execute now():
2017-5-18

和2层嵌套的decorator的相比较,3层嵌套的效果是:

 

 

>>> now = log('execute')(now)

首先执行的是log("execute"),返回的是decorator函数,在调用返回的函数,参数是now函数,返回值最终是wrapper函数,但是经过decorator装饰之后的函数,他的__name__变成了”wrapper“:

 

>>> now.__name__
'wrapper'

因为返回那个wrapper()函数名字就是”wrapper“,需要把原始函数的__name__属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__=func.__name__这样的代码,python内置functools.wraps就是干这个事的,一个完整的decorator写法如下:

 

import functools

def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

带参数的decorator:

 

 

import functools

def log(text):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

编写一个decorator,可以在函数调用前后打印”begin call“和”end call“的日志:

 

 

 

 

def log(func):
    def wrapper(*args, **kw):
        print('begin call %s():' % func.__name__)
        func(*args, **kw)
        print('end call %s():' % func.__name__)
    return wrapper

@log
def now():
    print (time.strftime('%Y-%m-%d',time.localtime(time.time())))

now()

带参数:

 

 

 

 

def log(strorfunc):
    if isinstance(strorfunc,str):
        def decorator(func):
            @functools.wraps(func)
            def wrapper(*args, **kw):
                print('%s %s():' % (strorfunc, func.__name__))
                func(*args, **kw)
            return wrapper
        return decorator
    else:
        @functools.wraps(strorfunc)
        def wrapper(*args, **kw):
            print('begin call %s():' %  strorfunc.__name__)
            strorfunc(*args, **kw)
            print('end call %s():' % strorfunc.__name__)
        return wrapper

@log('execute')
def now():
    print (time.strftime('%Y-%m-%d',time.localtime(time.time())))

now()


总结:
在面向对象(OOP)的设计模式中,decorator称之为装饰模式,OOP的装饰模式需要通过继承和组合来实现,而python除了支持OOP的decorator外,直接从语法层支持decorator。python中的decorator可以用函数实现(decorator可以增强函数的功能),也可以用类来实现。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值