Discovering Neural Wiring(2019 nips, nas)

本文介绍了一种利用剪枝思想学习神经元间连接的算法,将通道视为节点,权重视为边,通过实边进行信息流通,实现动态神经图谱的学习。在反向传播时,仅实边更新权重,虚边传递但不更新梯度。动态神经图谱在时间序列上按版本传播,引入循环结构,实验证明其效果优于静态图谱。
摘要由CSDN通过智能技术生成

概述:

这篇文章的感觉是用剪枝的思想来学习神经元(通道)之间的连线。

 

算法:

将channel作为node,edge对应weight

首先将边分为:

划分的依据是edge的权重|weight|的大小,取前k大为实边

在前向传播的时候将信息只在实边上流通,如图:

v点的输入信息表示为:

u点的信息即可表示为:

 

f函数是激活函数、batchnorm、conv的组合

 

在反向传播的时候,让梯度通过实边并对边进行更新,对于虚边,梯度会留向虚边,但是不会穿过虚边进行传播,如图:

 

在反向传播时对edge的权重weight进行更新,梯度信息-Δ是loss下降最快方向,让-Δ和Zu点乘,当Zu和-Δ方向一致时,更新最大,选择这条边也意味着loss下降最快:

当|Wuv|比实边里的边的绝对值大的时候,可以交换进实边集合。

更新的过程如图:

 

文章还提到了Dynamic Neural Graphs,和上面的static neural graphs的区别就是 传播的时候是按时间版本传播:

给出一个时间序列,对v这样的更新为:

这样的好处就是可以在图中引入循环,如图:

 

作者在实验中验证了 Dynamic Neural Graphs的效果要更好。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值