【今日CV 计算机视觉论文速览 第124期】Tue, 4 Jun 2019

今日CS.CV 计算机视觉论文速览
Tue, 4 Jun 2019
Totally 62 papers
?上期速览更多精彩请移步主页

在这里插入图片描述

Interesting:

?FE-GAN)于多尺度注意力机制的时尚图像编辑, 提出了一种可交互的图像操作技术(from 中山大学)
一些交互式操作后生成的新服饰图像结果,输入包含原图、草图和稀疏的颜色线条:
在这里插入图片描述

首先利用不完整的部分图,草图、噪音颜色掩膜来训练如何合成图像的语义结构,随后利用不完整的图像、完整的掩膜和合成的语义结构来补全,并利用输入的草图和颜色笔画进行属性操作。主要网络框架如下图所示:
在这里插入图片描述
一些结果的比较:
在这里插入图片描述
在这里插入图片描述

?非监督的单图像图层分离,假设前后混叠的图像互补相关,并提出了cycleGAN的方法联合自监督手段实现图层分离。对于反射混叠和图像分离十分有用 (from 北航)
假设y,z的信息在x中都可以找到,分离后的y、z是独立的分布(联合概率分布为0)。研究人员提出的USIS,将图像分别解码为fx,fy信号,并生成对应的y,z图像,并在最后实现自监督方法得到分离结果。
在这里插入图片描述
一些结果:
在这里插入图片描述

?DISCO利用立体视图输入推断深度, 为了解决对于底层信息的缺失和多级内容的探索,研究人员提出了一种网络来保留空间信息,并通过多层来实现大感受野来抽取多级特征,同时构建了合成日常视差数据集,训练了DISCO并在基准上进行测试。(from 三星印度研究院)
深度图的估计公式,f为焦距B为基线,δ为像素的视差:
在这里插入图片描述
网络架构如下图所示,包含了特征抽取、视差估计和视差精炼(底层信息接入),下采样2(blue)+3(yellow)次,解码5次上采样配合:
在这里插入图片描述
correlation层信息融合方式:
在这里插入图片描述
利用Blender合成数据集:
在这里插入图片描述
与一些方法的对比:
在这里插入图片描述
其中B代表基线,C代表纹理信息的加入:
在这里插入图片描述
datset:
立体视觉MiddleBury,有一些数据集获取的参考文献
视觉组
光流数据集
ETH3D multi-view stereo / 3D reconstruction
Scene Flow Datasets 包含视差图 弗莱堡大学视觉组

?视频三维漫画夸张卡通化技术3D Magic Mirror, 研究人员首先重建了每一帧的3D人脸,随后将将3D人脸形状从普通迁移到了漫画风格,通过新颖的识别和表情保留VAE-CycleGAN实现。并将多视角的CariGANs生成的问题重建到变性后的三维模型上去(from 中科大)
在这里插入图片描述
一些漫画图像的训练数据:
在这里插入图片描述
人脸变形方法:
在这里插入图片描述
编码器架构:
在这里插入图片描述

?Probabilistic Noise2Void ,PN2V,无监督的基于内容的去噪方法, 研究人员提出了一种概率的Noise2Void去噪方法,通过CNN来预测每个像素的强度分布,利用这种对于噪声合适的描述得到了完全概率模型,针对每个像素获得了完整的噪声观察和信号。(from MPI-CBG/PKS ,CSBD)
基于极大似然训练的方法预测每个像素的概率分布,其中si为干净图像,x为退化后的图像。:
在这里插入图片描述------->在这里插入图片描述
MMSE(Minimal Mean Squared Error)估计的结果如下所示,其中后验信号来自于先验蓝线与观测绿线的比例乘积
在这里插入图片描述
最终的估计结果如下图所示:
在这里插入图片描述
dataset:PN2V on datasets provided by Zhang et al. in [13]

TL;DwR
5K-Indicators方法解决K均值在大数据下的效率问题,KindAP机制
5基于纹理和法向量的三维表面高分辨生成,引入了3D appearance SR (3DASR)数据集,包含了数据集合成方法,ref: EHT3D [42], MiddleBury [43], and Collection of Bird,Beethoven and Bunny from the multi-view dataset of TUM[21], Fountain [51] and Relief [53]. code:https://github.com/ofsoundof/3D_Appearance_SR
6 VQ-VAE-2来自deepmind的高保真图像生成方法, code:https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/vqvae.py https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/vqvae.py, attaches
核磁共振与CT图像的融合Fusion W-Net (FW-Net)code:https://github.com/fanfanda/Medical-Image-Fusion
对于场景的视觉理解和叙述
4iMet大都会博物馆艺术品数据集
钢筋计数,中心定位
声音和视觉协同进行视觉理解
三维检索的新损失collaborative inner product loss
4RF-Net端到端的图像匹配网络,从匹配图像中输出分数图、方向图和尺度图,ref:LIFT, LF-Net,
全貌.全景边缘检测
对抗样本对于边缘检测分析研究
NIND,利用不同ISO和快门获取包含噪声自然图像数据集 dataset:Natural Image Noise Dataset:https://commons.wikimedia.org/wiki/Natural_Image_Noise_Dataset
利用相似域网络模型进行表面建模和骨架抽取
UZSIT无监督的零样本图像迁移方法ZstGANcode:https://github.com/linjx-ustc1106/ZstGAN-PyTorch
无监督元域图像迁移模型code:https://github.com/linjx-ustc1106/MT-GAN-PyTorch
ArcticNet用于极地地区湿地分类的模型code:https://github.com/geekJZY/arcticnet
用于diffuse optical tomography (DOT)光扩散层析成像的非局域前向模型
小数据集上的胸部X光检测


Daily Computer Vision Papers

3D Appearance Super-Resolution with Deep Learning
Authors Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys, Luc van Gool
我们解决了从多个视点捕获的对象的高分辨率HR纹理贴图的问题。在多视图情况下,最近已证明基于模型的超分辨率SR方法可恢复高质量纹理图。另一方面,基于深度学习的方法的出现已经对视频和图像SR的问题产生了重大影响。然而,仍然缺少基于深度学习的方法来超级解决3D对象的外观。在多视图情况下利用深度学习技术的力量的主要限制是缺乏数据。我们介绍了基于现有ETH3D 42,SyB3R 31,MiddleBury以及TUM 21,Fountain 51和Relief 53的3D场景集合的3D外观SR 3DASR数据集。我们提供高分辨率和低分辨率纹理贴图,3D几何模型,图像和投影矩阵。我们利用基于2D学习的SR方法和适用于3D多视图案例的设计网络的强大功能。我们通过引入法线贴图来整合几何信息,并进一步改善学习过程。实验结果表明,我们提出的网络成功地结合了3D几何信息并超级解析了纹理贴图。

The iMet Collection 2019 Challenge Dataset
Authors enyang Zhang, Christine Kaeser Chen, Grace Vesom, Jennie Choi, Maria Kessler, Serge Belongie
图形识别中现有的计算机视觉技术主要集中在实例检索或粗粒度属性分类上。在这项工作中,我们提出了一个新的数据集,用于细粒度的艺术品属性识别。数据集中的图像是大都会艺术博物馆的经典艺术作品的专业照片,注释由世界级博物馆专家策划和验证。此外,我们还将展示iMet Collection 2019 Challenge作为FGVC6研讨会的一部分。通过比赛,我们的目标是激发细粒度视觉识别研究社区的热情,并提升博物馆馆藏数字化的最新技术水平。

Automated Steel Bar Counting and Center Localization with Convolutional Neural Networks
Authors Zhun Fan, Jiewei Lu, Benzhang Qiu, Tao Jiang, Kang An, Alex Noel Josephraj, Chuliang Wei
自动钢筋计数和中心定位在钢筋的工厂自动化中起着重要作用。传统方法仅关注钢筋计数,其性能通常受到复杂工业环境的限制。卷积神经网络CNN具有很强的处理挑战环境中复杂任务的能力,适用于这项工作。提出了一种称为CNN DC的框架,以同时实现自动钢筋计数和中心定位。所提出的框架CNN DC首先用深CNN检测候选中心点。然后提出了一种有效的聚类算法 - 距离聚类DC,对候选中心点进行聚类,找到真正的钢筋中心。所提出的CNN DC可以在已建立的钢筋数据集上实现99.26的钢筋计数精度和4.1中心偏移的中心定位,这表明所提出的CNN DC在自动化钢筋计数和中心定位方面表现良好。代码公开于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值