题意:
给定一个数组a,求有多少个子串和是平方数,-100<a[i]<100。
解题思路:
因为a的长度是1e5,a[i]<=100,所以平方数小于sqrt(1e7),只要枚举下平方数就行。遍历a数组,求以i结尾的子数组,有多少个是平方数,(本题因为a[i]存在负数,没法用双指针)设前缀和为sum[i],就是求有多少个j满足sum[i]-sum[j-1]为平方数,假设当前枚举的是平方数s[k],即求有多少个j满足sum[j]=sum[i]-s[k],所以只需要在遍历的时候统计下sum的值,用一个pre数组,pre[sum[i]]++来维护,pre[sum[i]-s[k]]就是以i结尾,满足加和为s[k]的子数组数量。然后遍历逐一求和就行。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5;
int pre[maxn*200+1];
int a[maxn];
int n;
void solve()
{
cin>>n;
int i, j;
long long ans=0;
int s1=0, s2=0;
for(i=0; i<n; i++)
{
cin>>a[i];
if(a[i]>0)s2+=a[i];
else s1-=a[i];
}
pre[s1]=1;
int s=0;
for(i=0; i<n; i++)
{
s+=a[i];
for(j=0; j*j<=s2; j++)
{
if(s1+(s-j*j)>=0)ans+=pre[s1+(s-j*j)];
}
pre[s+s1]++;
}
cout<<ans<<"\n";
memset(pre, 0, sizeof(pre));
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int t;
cin>>t;
for(int i=1; i<=t; i++){
cout<<"Case #"<<i<<": ";
solve();
}
return 0;
}