Kick Start 2020 Round C Perfect Subarray

题目:给定数组有多少连续子数组的元素和为平方数。
思路:逆向思维,前缀和减平方数的前缀和,是否在之前出现过,出现过的前缀和用哈希表存。记录最小前缀和MinS,平方数增加到使前缀和preS小于MinS时,哈希表里一定不存在这个前缀和preS,直接break,减少循环次数。

时间复杂度 O(n * sqrt(10^7))
在这里插入图片描述

public class Solution {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
	    int t = sc.nextInt();
	    for(int cases = 1; cases <= t; cases++) {
	        int n = sc.nextInt();
	        int[] a = new int[n+1];
	        for(int j = 1; j <= n; j++) {
	            a[j] = sc.nextInt();
	        }
	        long res = 0;
	        int s = 0;
	        int MinS = 0;
	        Map<Integer, Integer> map = new HashMap<>();
	        map.put(0, 1);
	        for(int i = 1; i <= n; i++) {
	        		s += a[i];
	        		for(int j = 0; ; j++) {
	        			int preS = s - j*j;
	        			if(preS < MinS) break;
	        			if(map.containsKey(preS))
	        				res += map.get(preS);
	        		}
	        		MinS = Math.min(s, MinS);
	        		map.put(s, map.getOrDefault(s, 0) + 1);
	        }
		    System.out.println("Case #" + cases + ": " + res);
	    }

	}
}
思路:逆向思维,从i开始的序列,加上平方数的前缀和,是否出现过,加上其出现次数。i位置的前缀和次数减一。

c++此思路可过,java大数据集不通过

#include <iostream>

using namespace std;
typedef long long ll;
int a[100005];
int sum[100005];
const int V = 3e7 + 5;

int nb, b[V];
void init() {
    for(int i = 0; ;) {
        b[i] = i*i;
        if(b[i] < 1e7) {
            i++;
        } else {
            nb = i-1;
            break;
        }
    }
}
int cnt[V];
int main() {
    int T;
    cin >> T;
    init();
    for(int cases = 1; cases <= T; cases++) {
        int n;
        cin >> n;
        sum[0] = 1e7 + 5;

        for(int i=1; i<=n; ++i) {
            cin >> a[i];
            sum[i] = sum[i-1] + a[i];
            cnt[sum[i]]++;
        }
        ll res = 0;
        for(int i = 1; i <= n; i++) {
            for(int j = 0; j <= nb; j++) {
                int v = b[j] + sum[i-1];
                res += cnt[v];
            }
            cnt[sum[i]]--;
        }
        printf("Case #%d: %lld\n", cases, res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值