题意:
n头狼站成一排,击杀其中的第i头狼需要受到a[i]的攻击,每头狼对相邻的狼有攻击加成b[i],问杀死所有的狼最少受到多少点伤害。
思路:
一道区间dp例题。
dp[i][j]表示从击杀第i头狼到第j头狼,我们会受到多少点伤害。
dp[i][j]可以由dp[i][k-1],dp[k+1][j]加上k这个点合成,转移方程就是
dp[i][j]=min(dp[i][k-1]+a[k]+dp[k+1][j])+b[i-1]+b[j+1];(i<=k<=j && i<j)
这个转移方程表示两个区间的狼先击杀,最后击杀第k头狼。
在写代码的时候我们如果枚举起点i和终点j去更新的话,会发现转移的时候dp[k+1][j]的值还是未知的,所以这种枚举方式没办法用for循环写,需要用dfs去记忆化搜索。
如果枚举区间长度和起点的话就可以了,因为两个子状态的长度一定小于现在状态的长度。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn=205;
const int inf=99999999;
int a[maxn];
int b[maxn];
int dp[maxn][maxn];
int dfs(int l, int r)
{
if(l>r)return 0;
if(dp[l][r]!=inf)return dp[l][r];
int k;
for(k=l; k<=r; k++)
{
dp[l][r]=min(dp[l][r], dfs(l, k-1)+a[k]+b[l-1]+b[r+1]+dfs(k+1, r));
}
return dp[l][r];
}
int main()
{
int k, i, j, t, e=1, n;
cin>>t;
while(t--)
{
scanf("%d", &n);
memset(dp, 0, sizeof(dp));
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for(i=1; i<=n; i++)
{
for(j=i; j<=n; j++)dp[i][j]=dp[j][i]=inf;
}
for(i=1; i<=n; i++)
{
scanf("%d", &a[i]);
}
for(i=1; i<=n; i++)
{
scanf("%d", &b[i]);
}
b[n+1]=b[0]=0;
for(i=1; i<=n; i++)
{
dp[i][i]=a[i]+b[i-1]+b[i+1];
}
printf("Case #%d: %d\n", e++, dfs(1,n));
}
}