HDU 5115 Dire Wolf(区间dp)

本文分析了HDU5115 DireWolf问题中的4维动态规划状态设计,通过观察区间性质简化为2维状态,揭示了如何通过优化状态转移方程降低空间复杂度和时间复杂度。通过实例和代码展示了这一过程,并讨论了随机序、区间序与DFS序在问题求解中的转换。
摘要由CSDN通过智能技术生成

问题

HDU 5115 Dire Wolf - https://acm.hdu.edu.cn/showproblem.php?pid=5115

概述

  • 方法:区间dp
  • 对于一个区间 [ l , r ] [l,r] [lr],设最后打败的编号是 k ( l ≤ k ≤ r ) k (l\leq k \leq r) k(lkr),则问题可以分解为两个子问题,即 [ l , k − 1 ] [l,k-1] [lk1] [ k + 1 , r ] [k+1,r] [k+1r],因此遍历 k k k 后即得区间 [ l , r ] [l,r] [lr] 的解

4维状态设计

分析

  • d p [ L ] [ l ] [ r ] [ R ] dp[L][l][r][R] dp[L][l][r][R]:当区间 [ l , r ] [l,r] [lr] 的左、右邻居是 L L L R R R 时,打败这个区间内的狼需要的最小能量
  • 为什么是 4 4 4 维的状态空间?
  • 因为区间 [ l , r ] [l,r] [lr] 需要的最小能量与 L 、 R L、R LR 有关,也就是说若只考虑 l 、 r l、r lr ,则不具有“无后效性”
  • [ l , k − 1 ] [l,k-1] [lk1] [ k + 1 , r ] [k+1,r] [k+1r] 区间内的狼被打败后, L , k , R L,k,R LkR 相邻,此时要打败 k k k需要的能量为:
b[L] + a[k] + b[R] // 这里是dp[L][k][k][R]而不是dp[k][k],也说明了不满足“无后效性”
  • 状态转移方程为
dp[L][l][r][R] = min(dp[L][l][r][R], dp[L][l][k-1][k] + b[L] + a[k] + b[R] + dp[k][k+1][r][R]);
  • 空间复杂度是: O ( n 4 ) O(n^4) O(n4)
  • 时间复杂度是: O ( n 5 ) O(n^5) O(n5)。原因:dp数组的每一个值的确定复杂度是 O ( n ) O(n) O(n)

代码

/* HDU 5115 Dire Wolf, 4维dp */
#include<bits/stdc++.h>
using namespace std;
const int MXN = 55; // 210;
const int inf = 0x7f7f7f7f;
int n, a[MXN], b[MXN], dp[MXN][MXN][MXN][MXN];
int dfs(int L, int l, int r, int R){
	int &DP = dp[L][l][r][R];
	if(DP < inf) return DP;
	int x, y;
	for(int i = l; i <= r; ++i){
		x = l <= i-1 ? dfs(L, l, i-1, i) : 0;
		y = i+1 <= r ? dfs(i, i+1, r, R) : 0;
		DP = min(DP, x + b[L] + a[i] + b[R] + y);
	}
	return DP;
}
int main(){
	int t;
	scanf("%d", &t);
	while(t--){
		scanf("%d", &n);
		memset(dp, 0x7f, sizeof dp);
		for(int i = 1; i <= n; ++i) scanf("%d", a+i);
		for(int i = 1; i <= n; ++i) scanf("%d", b+i);
		b[0] = b[n+1] = 0;
		printf("%d\n", dfs(0, 1, n, n+1));
	}	
    return 0;
}

2维状态设计

分析

  • 对于区间 [ l , r ] [l,r] [lr],它的左邻居 L L L 总有 L = l − 1 L=l-1 L=l1,右邻居 R R R 总有 R = r + 1 R=r+1 R=r+1,在4维状态设计的代码中清晰的体现了这一点
  • 首先,在 dfs 调用入口,满足 L = l − 1 , R = r + 1 L = l -1,R = r + 1 L=l1R=r+1
dfs(0, 1, n, n+1)
  • 其次,在 dfs 的递归定义中,因调用入口满足 L = l − 1 , R = r + 1 L = l -1, R = r + 1 L=l1R=r+1,所以递归调用时也满足
int dfs(int L, int l, int r, int R){ // 调用入口满足:L = l -1, R = r + 1
	int &DP = dp[L][l][r][R];
	if(DP < inf) return DP;
	int x, y;
	for(int i = l; i <= r; ++i){
		x = l <= i-1 ? dfs(L, l, i-1, i) : 0; // L = l - 1, i = (i - 1) + 1
		y = i+1 <= r ? dfs(i, i+1, r, R) : 0; // i = (i + 1) - 1, R = r + 1
		DP = min(DP, x + b[L] + a[i] + b[R] + y);
	}
	return DP;
}
  • 因此,4维状态设计 ⇒ 优 化 \quad \overset{优化}{\Rightarrow} \quad 2维状态设计

代码

/* HDU 5115 Dire Wolf, 2维dp */
#include<bits/stdc++.h>
using namespace std;
const int MXN = 210;
const int inf = 0x7f7f7f7f;
int n, a[MXN], b[MXN], dp[MXN][MXN];
int dfs(int l, int r){
	int &DP = dp[l][r];
	if(DP < inf) return DP;
	if(l > r) return DP = 0;
	for(int i = l; i <= r; ++i)
		DP = min(DP,dfs(l,i-1)+b[l-1]+a[i]+b[r+1]+dfs(i+1,r));
	return DP;
}
int main(){
	int t, T = 0;
	scanf("%d", &t);
	while(t--){
		scanf("%d", &n);
		memset(dp, 0x7f, sizeof dp);
		for(int i = 1; i <= n; ++i) scanf("%d", a+i);
		for(int i = 1; i <= n; ++i) scanf("%d", b+i);
		b[0] = b[n+1] = 0;
		printf("Case #%d: %d\n", ++T, dfs(1, n));
	}	
    return 0;
}

随机序 ⇒ \Rightarrow 区间序 ⇒ \Rightarrow dfs序

随机序

  • 设有共有10只狼,有6只狼被打败,且先后序为: 2 7 4 9 5 8 2\quad 7\quad 4\quad 9\quad 5\quad 8 274958

区间序

  • 交换不相邻的区间内的狼的序不影响结果
  • 被打败的狼分布在 3 3 3 个独立的连续的区间中,分别是 [ 2 , 2 ] 、 [ 4 , 5 ] 、 [ 7 , 9 ] [2,2]、[4,5]、[7,9] [22][45][79]
    • [ 2 , 2 ] [2,2] [22] 内,狼被打败的序为: 2 2 2
    • [ 4 , 5 ] [4,5] [45] 内,狼被打败的序为: 4 5 4\quad 5 45
    • [ 7 , 9 ] [7,9] [79] 内,狼被打败的序为: 7 9 8 7\quad 9\quad 8 798
    • 若按照区间优先的原则,将打狼次序调整为: 2 4 5 7 9 8 2\quad 4\quad 5\quad 7\quad 9\quad 8 245798,易证所需能量最小值不变

dfs序

  • 一个区间的随机序对应了一个 dfs 序
  • 上述例子中,在 [ 7 , 9 ] [7,9] [79] 内的打狼 7 9 8 7\quad 9\quad 8 798,对应了dfs后序遍历
  • 再如: 设有共有10只狼,10只狼被打败的序为: 10 2 7 4 9 5 8 1 3 6 10 \quad 2\quad 7\quad 4\quad 9\quad 5\quad 8 \quad 1\quad 3\quad 6\quad 10274958136
    • 首先:6 是根, [ 1 , 5 ] [1,5] [15] [ 7 , 10 ] [7,10] [710] 是子树,因此根据区间调整打狼次序,调整后为 [ 2 4 5 1 3 ] [ 10 7 9 8 ] 6 [2\quad 4\quad 5\quad 1\quad 3]\quad [10 \quad 7\quad 9\quad8] \quad 6\quad [24513][10798]6
    • 其次:调整 [ 1 , 5 ] [1,5] [15] 内的序,其中3是根,依次类推……
    • 然后:调整 [ 7 , 10 ] [7,10] [710] 内的序,其中8是根,依次类推……
    • 最终调整为: 2 1 4 5 3 7 10 9 8 6 2 \quad 1\quad 4\quad 5\quad 3\quad 7\quad 10\quad 9\quad 8\quad 6\quad 21453710986
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值