一、多线程的设计模式
多线程的设计模式
并行设计模式属于设计优化的一部分,它是对一些常用的多线程结构的总结和抽象。与串行程序相比,并行程序的结构通常更为复杂。因此合理的使用并行模式在多线程开发中更具有意义,在这里主要介绍Future、Master-Worker和生产者-消费者模式。
Future模式
对于多线程,如果线程A要等待线程B的结果,那么线程A没必要等待B,直到B有结果,可以先拿到一个未来的Future,等B有结果是再取真实的结果。Future模式有点类似于商品订单。比如在网购时,当看中某一件商品时就可以提交订单,当订单处理完成后,在家里等待商品送货上门即可。或者说更形象的我们发送Ajax请求时,页面是异步进行后台处理,用户无需一直等待请求结果,可以继续浏览或操作其他内容。
主函数
public class Main {
public static void main(String[] args) {
FutureClient fc = new FutureClient();
Data data = fc.request("请求参数");
System.out.println("请求发送成功!");
System.out.println("做其他的事情...");
String result = data.getRequest();
System.out.println(result);
}
}
Data.java
public interface Data {
String getRequest();
}
FutureData.java
public class FutureData implements Data{
private RealData realData;
private boolean isReady = false;
public synchronized void setRealData(RealData realData){
//如果已经加载完毕就直接返回
if(isReady){
return;
}
//如果没有装载,进行装载真实对象
this.realData= realData;
isReady = true;
//进行通知
notify();
}
@Override
public synchronized String getRequest() {
//如果没有装载好,程序就一直处于阻塞状态
while(!isReady){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//装载好直接获取数据即可
return this.realData.getRequest();
}
}
RealData.java
public class RealData implements Data{
private String result;
public RealData(String queryStr){
System.out.println("根据"+queryStr+"进行查询,这是一个很耗时的操作..");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("操作完毕,获取结果");
result="查询结果";
}
@Override
public String getRequest() {
return result;
}
}
FutureClient.java
public class FutureClient {
public Data request(final String queryStr){
//1 我想要一个代理对象(Data接口的实现类)先返回发送请求的客户端,告诉他请求已经接收到,可以做其他事情
final FutureData futureData = new FutureData();
//2 启动一个新的线程,去加载真实的数据,传递给这个代理对象
new Thread(new Runnable(){
@Override
public void run() {
//3 这个新的线程可以去慢慢加载真实对象,然后传递给代理对象
RealData realData = new RealData(queryStr);
futureData.setRealData(realData);
}
}).start();
//直接返回一个假的包装类futureData
return futureData;
}
}
Master-Worker模式
Master-Worker模式是常用的并行模式。它的核心思想是系统由两类进程协作工作:Master进程和Worker进程。Master负责接收和分配任务,Worker负责处理子任务。当各个Worker子进程处理完成后,会将结果返回给Master,由Master做归纳和总结。其好处是能将一个大任务分解成若干个小任务,并行执行,从而提高系统的吞吐量。
Task.java
public class Task {
private int id;
private String name;
private int price;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getPrice() {
return price;
}
public void setPrice(int price) {
this.price = price;
}
}
Worker.java
public class Worker implements Runnable{
private ConcurrentLinkedQueue<Task> workQueue;
private ConcurrentHashMap<String,Object> resultMap;
@Override
public void run() {
while(true){
Task input = this.workQueue.poll();
if(input==null)break;
//真正的去做业务处理
Object output = MyWorker.handle(input);
this.resultMap.put(Integer.toString(input.getId()), output);
}
}
public static Object handle(Task input){
return null;
}
public void setWorkerQueue(ConcurrentLinkedQueue<Task> workQueue) {
this.workQueue=workQueue;
}
public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {
this.resultMap=resultMap;
}
}
MyWorker.java继承Worker.java,重写handle方法
public class MyWorker extends Worker{
public static Object handle(Task input) {
Object output = null;
try {
//处理task的耗时,可能是数据的加工,也可能是操作数据库
Thread.sleep(500);
output = input.getPrice();
} catch (InterruptedException e) {
e.printStackTrace();
}
return output;
}
}
Master.java
public class Master {
//1 应该有一个承装任务的集合
private ConcurrentLinkedQueue<Task> workQueue = new ConcurrentLinkedQueue<Task>();
//2 使用普通的HashMap去承装所有的worker对象
private HashMap<String,Thread> workers = new HashMap<String,Thread>();
//3 使用一个容器承装每一个worker并发执行的结果集
private ConcurrentHashMap<String,Object> resultMap = new ConcurrentHashMap<String,Object>();
//4 构造方法
public Master(Worker worker,int workerCount){
//每一个worker对象都需要有master的应用workQueue用于任务的领取,resultMap用于任务的提交
worker.setWorkerQueue(this.workQueue);
worker.setResultMap(this.resultMap);
for(int i=0;i<workerCount;i++){
//key表示每一个worker的名字,value表示线程执行对象
workers.put("子节点"+Integer.toString(i), new Thread(worker));
}
}
//5 提交方法
public void submit(Task task){
this.workQueue.add(task);
}
//6 需要有一个执行的方法(启动应用程序让所有的worker工作)
public void execute(){
for(Map.Entry<String,Thread> me:workers.entrySet()){
me.getValue().start();
}
}
//8 判断线程是否执行完毕
public boolean isComplete() {
for(Map.Entry<String, Thread> me:workers.entrySet()){
if(me.getValue().getState()!=Thread.State.TERMINATED){
return false;
}
}
return true;
}
//9 返回结果集数据
public int getResult() {
int ret = 0;
for(Map.Entry<String,Object> me:resultMap.entrySet()){
//汇总逻辑
ret+=(Integer)me.getValue();
}
return ret;
}
}
Main.java
public class Main {
public static void main(String[] args) {
System.out.println("我的机器可用processor的数量:"+Runtime.getRuntime().availableProcessors());
Master master = new Master(new MyWorker(),10);
Random r = new Random();
for(int i=0;i<100;i++){
Task task = new Task();
task.setId(i);
task.setName("任务"+i);
task.setPrice(r.nextInt(1000));
master.submit(task);
}
master.execute();
long start = System.currentTimeMillis();
while(true){
if(master.isComplete()){
long end = System.currentTimeMillis() -start;
int ret = master.getResult();
System.out.println("最终结果:"+ret+",执行耗时:"+end+"毫秒");
break;
}
}
}
}