卷积神经网络与小型全连接网络在MNIST数据集上的对比

卷积神经网络(CNN)

深度卷积神经网络中,有如下特性

  • 很多层(Compositionality,组合性):
    深度卷积神经网络通常由多层卷积和非线性激活函数组成。这种多层结构使得网络能够逐步提取和组合低层次的特征(如边缘、纹理)到高层次的特征(如物体的部件和整体),从而实现对复杂模式的表达和识别。
  • 卷积(Locality + Stationarity of images,本地性 + 图像的平稳性):
    卷积操作利用了图像的局部性,即图像中的相邻像素往往相关,因此可以通过局部的滤波器(卷积核)提取有意义的局部特征。同时,卷积操作也假设图像的统计特性在空间上是平稳的,即一个特征无论出现在图像的哪个部分,都具有相似的重要性。因此,卷积核在整个图像中共享,可以捕捉到相似的模式。
  • 池化(Invariance of object class to translations,物体类别对平移的不变性):
    池化操作通过减少特征图的空间尺寸,使得模型对物体在图像中的位置不敏感。这种不变性使得模型能够正确识别出被平移(即在图像中位置发生变化)的物体类别,从而增强了模型的鲁棒性和泛化能力。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

1. 加载数据 (MNIST)

PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  • root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件
  • train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download,如果设置为True, 从互联网下载数据并放到root文件夹下
  • transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
  • target_transform 一种函数或变换,输入目标,进行变换。

另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

# transforms.ToTensor():将PIL图像或numpy数组转换为PyTorch的张量(tensor),并将图像的像素值从[0, 255]归一化到[0.0, 1.0]。
# transforms.Normalize((0.1307,), (0.3081,)):对图像进行标准化处理,使用的均值是0.1307,标准差是0.3081。此均值和标准差是从MNIST训练数据中计算得出的。
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)

显示数据集中的部分图像

# 创建一个新的图形对象,并设置图形的大小为8x5英寸。这个尺寸决定了最终图像在显示或保存时的物理尺寸。
plt.figure(figsize=(8, 5))

# 绘制20张图片
for i in range(20):
    # 创建一个4行5列的子图,并指定当前要绘制的子图位置为第 i + 1 个。
    plt.subplot(4, 5, i + 1)
    """
    image 是从数据集中获取的张量,形状为 [1, 28, 28],其中 1 表示通道数(灰度图像),28x28 是图像的大小。
    """
    image, _ = train_loader.dataset.__getitem__(i)
    """
    image.squeeze():将图像张量的维度从 [1, 28, 28] 压缩为 [28, 28],去除维度为1的通道维度。
    .numpy():将张量转换为NumPy数组,以便 matplotlib 处理。
    'gray':指定显示图像时使用灰度色彩映射。
    """
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');

在这里插入图片描述

2. 创建网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__中。

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。

class FC2Layer(nn.Module):
    '''
    参数数量:
    input_size = 28 * 28 = 784,n_hidden =8 ,output_size=10
    第一层参数:784*8+8=6280
    第二层参数:8*8+8=72
    第三次参数:8*10+10=90
    总参数个数:6442
    '''
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        # x = x.reshape(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    '''
    nput_size = 28 * 28 = 784,n_feature =6 ,output_size=10
    第一层:conv1=150+6
    第二层:max_pool2d
    第三层:conv2=900+6
    第四层:max_pool2d
    第五层:fc1,该层的输入特征数量经过前四层依次变为了 1*28*28=784 -> 6*24*24=3456 -> 6*12*12=864 ->  6*8*8=256 -> 6*4*4=96
            所以该层的参数量:96*50+50=4850
    第六层:fc2,50*10+10=510
    总参数为156+906+4850+510=6422
    '''
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        # 输入通道为1(适用于单通道灰度图像),输出通道为 n_feature(定义的特征数量),卷积核大小为 5x5。
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        # x = x.view(-1, self.n_feature*4*4):将池化后的特征图展平为一维,以便传入全连接层。
        # -1 表示自动推导批量大小,self.n_feature * 4 * 4 是展平后的特征向量大小。
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

定义训练和测试函数

# 训练函数
def train(model):
    # 设置model为训练模式。某些层(如Dropout和BatchNorm)在训练和测试模式下的行为有所不同,因此在训练时需要调用此方法以确保模型的行为正确。
    model.train()
    """
    enumerate(train_loader):遍历训练数据加载器 train_loader,每次迭代返回一个批次的数据和目标标签。
    batch_idx 是当前批次的索引, (data, target) 是批次中的数据和标签。
    """
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        # 计算负对数似然损失(negative log-likelihood loss),通常用于分类任务。
        loss = F.nll_loss(output, target)
        # 方向传播计算梯度
        loss.backward()
        # 更新参数
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    # 将模型设置为评估模式
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        """
        .max(1, keepdim=True):在类别维度(1)上找到最大值及其索引。keepdim=True 确保输出张量的维度保持不变。
        [1]:选择最大值的索引,这就是预测的类别标签。
        """
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

3. 在小型全连接网络上训练(Fully-connected network)

n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)
Number of parameters: 6442
Train: [0/60000 (0%)]	Loss: 2.447731
Train: [6400/60000 (11%)]	Loss: 1.787504
Train: [12800/60000 (21%)]	Loss: 1.327380
Train: [19200/60000 (32%)]	Loss: 0.817053
Train: [25600/60000 (43%)]	Loss: 0.774302
Train: [32000/60000 (53%)]	Loss: 0.769718
Train: [38400/60000 (64%)]	Loss: 0.663008
Train: [44800/60000 (75%)]	Loss: 0.713497
Train: [51200/60000 (85%)]	Loss: 0.326436
Train: [57600/60000 (96%)]	Loss: 0.564632

Test set: Average loss: 0.4205, Accuracy: 8788/10000 (88%)

3. 在卷积神经网络上训练

需要注意的是,上在定义的CNN和全连接网络,拥有相同数量的模型参数

# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)
Number of parameters: 6422
Train: [0/60000 (0%)]	Loss: 2.310429


C:\Users\Joker\.conda\envs\pytorch\Lib\site-packages\torch\nn\modules\conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cudnn\Conv_v8.cpp:919.)
  return F.conv2d(input, weight, bias, self.stride,
C:\Users\Joker\.conda\envs\pytorch\Lib\site-packages\torch\autograd\graph.py:744: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cudnn\Conv_v8.cpp:919.)
  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass


Train: [6400/60000 (11%)]	Loss: 1.943792
Train: [12800/60000 (21%)]	Loss: 0.358685
Train: [19200/60000 (32%)]	Loss: 0.366543
Train: [25600/60000 (43%)]	Loss: 0.492693
Train: [32000/60000 (53%)]	Loss: 0.096839
Train: [38400/60000 (64%)]	Loss: 0.086685
Train: [44800/60000 (75%)]	Loss: 0.194051
Train: [51200/60000 (85%)]	Loss: 0.096391
Train: [57600/60000 (96%)]	Loss: 0.097376

Test set: Average loss: 0.1357, Accuracy: 9579/10000 (96%)

通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过两个手段:

  • 卷积:Locality and stationarity in images
  • 池化:Builds in some translation invariance

5. 打乱像素顺序再次在两个网络上训练与测试

考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样 卷积 和 池化 就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

首先下面代码展示随机打乱像素顺序后,图像的形态:

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    """
    image.view(-1, 28*28):将图像展平为一维向量(大小为784),准备进行像素重新排列。
    .clone():创建一个图像的副本,以免直接修改原图像数据。
    image_perm[:, perm]:根据 perm 中的随机顺序重新排列图像的像素。
    image_perm.view(-1, 1, 28, 28):将重新排列后的图像重新形成为 28x28 的图像。
    """
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

在这里插入图片描述

重新定义训练与测试函数,我们写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。

与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

在全连接网络上训练与测试:

perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)
Number of parameters: 6442
Train: [0/60000 (0%)]	Loss: 2.359195
Train: [6400/60000 (11%)]	Loss: 1.950317
Train: [12800/60000 (21%)]	Loss: 1.554770
Train: [19200/60000 (32%)]	Loss: 1.118916
Train: [25600/60000 (43%)]	Loss: 0.862258
Train: [32000/60000 (53%)]	Loss: 0.771859
Train: [38400/60000 (64%)]	Loss: 0.420492
Train: [44800/60000 (75%)]	Loss: 0.553502
Train: [51200/60000 (85%)]	Loss: 0.524959
Train: [57600/60000 (96%)]	Loss: 0.550625

Test set: Average loss: 0.5138, Accuracy: 8454/10000 (85%)

在卷积神经网络上训练与测试:

perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)
Number of parameters: 6422
Train: [0/60000 (0%)]	Loss: 2.294312
Train: [6400/60000 (11%)]	Loss: 2.265878
Train: [12800/60000 (21%)]	Loss: 2.252986
Train: [19200/60000 (32%)]	Loss: 2.101082
Train: [25600/60000 (43%)]	Loss: 1.784680
Train: [32000/60000 (53%)]	Loss: 1.304697
Train: [38400/60000 (64%)]	Loss: 0.977341
Train: [44800/60000 (75%)]	Loss: 0.788397
Train: [51200/60000 (85%)]	Loss: 0.847415
Train: [57600/60000 (96%)]	Loss: 0.673661

Test set: Average loss: 0.6098, Accuracy: 8039/10000 (80%)

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值