自然数幂和(递推式k^2方法)

ni=1ikk<=2000n<=1018

f(k)=ni=1ik
大致思路是用 ni=1(i+1)k 与其用二项式展开化简后的式子,两边同时减去f(k)。类似等比数列的方法。

ni=1(i+1)kf(k)=(n+1)k1
同时
ni=1(i+1)kf(k)=k1j=0Cjkf(j)

联立二式 (n+1)k1=k1j=0Cjkf(j) ,将f(k-1)单独提出,发现等式另一侧只需要用到1..k-2的f.(这一步比较坑,用的是f(k)化简,求的是(f(k-1).)

f(k)=(n+1)k+11k1i=0Cik+1f(i)k+1 .
然后我们就可以用 k2 的方法去解决这个问题了。当然组合数需要预处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值