Description
策策同学特别喜欢逛公园,公园可以看做有n个景点的序列,每个景点会给策策带来di 的愉悦度,策策初始有x0 的愉悦度,然而愉悦度也是有上限的,他在每个景点的愉悦度上限为li ,策策想要从 l 到 r这一段景点中选择一段景点参观(从这一段的左端点逛到这一段的右端点),策策想知道他最终的愉悦度的最大值是多少,你能帮帮他吗?(区间可以为空,也就是说答案最小为x0 )
分析
首先需要一些感性认识,很显然当前权值越大越好。
然后,从x0开始一段l,r的权值就是
m
i
n
(
x
0
+
s
u
m
d
,
g
(
l
,
r
)
)
min(x0+sumd,g(l,r))
min(x0+sumd,g(l,r))。g(l,r)是用inf开始跑的权值。 其实也就是分了两种情况,发现只要中间有个地方卡住了,那么答案一定和一开始就用inf跑一样,因为inf是一定在x0上方的,卡住的时候就恰好重合了。
然后就开始分块,由于我们希望当前值在过程中越大越好,并且他经过一段之后的变化是根据开始权值x0分两段的。假如分
n
\sqrt n
n块,单块内有n个区间,可以通过排序的方式维护出所有可能最大的区间。给定的x0直接在上面二分就可以知道获得的最大权值了。
然后就标准分块啊,块内,跨块,散块balabala
理论上块大小取nlogn的根号是最快的,但由于常数缘故应该取小一点。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
// #define min(a,b) ((a)>(b)?(b)?(a))
// #define max(a,b) ((a)>(b)?(a):(b))
#define mp make_pair
using namespace std;
typedef pair<int,int> PII;
const int N = 4e4+10,SZ=201,KS=N/SZ+20,inf=1e9;
int n,q,sz,tot,tot2,tot3;
int d[N],lim[N],sum[N],len[KS],slen[KS],plen[KS];
bool got[SZ*SZ/2];
PII lis[KS][SZ*SZ/2];
PII tmp[SZ*SZ/2],tmp2[SZ],tmp3[SZ];
PII suf[KS][SZ],pre[KS][SZ],wh[KS];
void downtmp(PII *tmp,PII *a,int &e,int o) {
sort(tmp+1,tmp+1+o);
int mx = -1;
memset(got,0,sizeof got);
for (int i = o; i; i--) {
if (i == tot || tmp[i+1].first != tmp[i].first) {
if (tmp[i].second > mx) {
mx = tmp[i].second;
got[i]=1;
}
}
}
e=0;
for (int i = 1; i <= o; i++) if (got[i]) {
// printf("%d %d\n",e,i);
a[++e] = tmp[i];
}
}
void init() {
sz = 200;//sqrt(n * log2(n));
for (int cnt=1,L=1; L <= n; cnt++) {
int R = min(n,L+sz-1);
tot = tot2 = tot3 = 0;
for (int l = L; l <= R; l++) {
int now = inf;
for (int r = l; r <= R; r++) {
now=min(lim[r],d[r]+now);
tmp[++tot] = mp(now, sum[r]-sum[l-1]);
if (r == R) tmp2[++tot2] = tmp[tot];
if (l == L) tmp3[++tot3] = tmp[tot];
if (l == L && r == R)
wh[cnt] = tmp[tot];
}
}
downtmp(tmp,lis[cnt],len[cnt],tot);
downtmp(tmp2,suf[cnt],slen[cnt],tot2);
downtmp(tmp3,pre[cnt],plen[cnt],tot3);
L=R+1;
}
}
int deal(PII a,int sr) {
return min(a.first,a.second+sr);
}
int ans,x0;
int biu(PII *con,int le,int st) {
int l = 1, r = le, ret = r + 1;
while (l <= r) {
int mid = (l+r)>>1;
if (con[mid].first<=con[mid].second+st){
ret=l=mid;l++;
} else r=mid-1;
}
int re = con[ret].first;
if (ret+1 <= le) re = max(re, con[ret+1].second+st);
if (ret == le + 1) {
re = min(con[1].first,con[1].second+st);
// min(con[le].first,con[le].second+st));
}
return re;
}
int main() {
freopen("park.in","r",stdin);
// freopen("park.out","w",stdout);
cin>>n>>q;
for (int i = 1; i <= n; i++) scanf("%d",&d[i]),sum[i]=sum[i-1]+d[i];
for (int i = 1; i <= n; i++) scanf("%d",&lim[i]);
init();
for (int w = 1; w <= q; w++) {
int L,R; scanf("%d %d %d",&L,&R,&x0); ans=x0;
int lk = (L - 1) / sz + 1, rk = (R - 1) / sz + 1;
if (lk == rk) {
int now = x0;
for (int l = L; l <= R; l++) {
now = min(lim[l],d[l]+now);
now = max(now, x0);
ans = max(ans,now);
}
printf("%d\n",ans);
continue;
}
//×óÉ¢¿é
int sL = lk*sz,be = 0;
for (int j = L,now=x0; j <= sL; j++) {
now=min(lim[j],now+d[j]);
now=max(now,x0);
ans=max(ans,now);
if (j == sL) be = now;
}
//Õû¿é
for (int i = lk + 1; i < rk; i++) {
ans = max(ans, biu(lis[i],len[i],x0));
ans = max(ans, biu(pre[i],plen[i],be));
be = max(biu(suf[i],slen[i],x0), deal(wh[i],be));
}
//×óµ½ÓÒÉ¢¿é
for (int i = rk*sz-sz+1; i <= R; i++) {
be=min(lim[i],be+d[i]);
ans=max(ans,be);
}
//ÓÒÉ¢¿é
for (int i = rk*sz-sz+1,now=x0; i <= R; i++) {
now=min(lim[i],now+d[i]);
now=max(now,x0);
ans=max(ans,now);
}
printf("%d\n",ans);
}
}