传送门
这篇林克卡特树+简单的wqs二分/凸优化是来骗访问量的
Solution
这其实是个
w
q
s
wqs
wqs二分套
w
q
s
wqs
wqs二分
O
(
n
a
b
)
\mathcal{O(nab)}
O(nab)的
d
p
dp
dp很好写
我们要做的是用凸优化,把时间复杂度降到
O
(
n
log
a
log
b
)
\mathcal{O(n\log a\log b)}
O(nlogalogb)
显然这是一个凸函数,为什么呢?
因为你每次多用一个Poke Ball
或者一个Ultra Ball
能增加的捕捉到的Pokemons
的期望一定比前一次的来得少
所以它的导数一定是递减的所以它是凸的
(不要以为递增函数一定不是凸函数,这是片面的理解)
所以我们可以在
a
a
a这一维上进行
w
q
s
wqs
wqs二分,也可以在
b
b
b这一维上进行
每次
d
p
dp
dp转移的时候就只需要
O
(
n
)
\mathcal{O(n)}
O(n)的时间,每用一个Poke Ball
减少
m
i
d
mid
mid的
d
p
dp
dp值,用Ultra Ball
也是一样的
Warning
判断
d
p
dp
dp的
a
,
b
a,b
a,b与我们现有的
a
,
b
a,b
a,b比较时,要用>=
不能用>
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define T 40
#define N 2010
using namespace std;
typedef double LD;
const LD INF = 1e5;
LD u[N], v[N], q[N], L, R;
int n, a, b;
struct Node{
LD val;
int a, b;
Node(LD V = 0, int A = 0, int B = 0) {
val = V; a = A; b = B;
}
inline bool operator < (const Node &o) const {
return val < o.val;
}
inline Node operator + (const Node &o) const {
return Node(val + o.val, a + o.a, b + o.b);
}
}dp[N];
inline void check_agn(LD x, LD y) {
dp[0] = Node();
for (int i = 1; i <= n; ++i) {
dp[i] = Node(-INF, 0, 0);
dp[i] = max(max(dp[i - 1], dp[i - 1] + Node(q[i] - x - y, 1, 1)), max(dp[i - 1] + Node(u[i] - x, 1, 0), dp[i - 1] + Node(v[i] - y, 0, 1)));
}
}
inline void check(LD v) {
L = 0, R = 1;
for (int i = 1; i <= T; ++i) {
LD mid = (L + R) / 2;
check_agn(v, mid);
if (dp[n].b >= b) L = mid;
else R = mid;
}
check_agn(v, L);
}
int main() {
scanf("%d%d%d", &n, &a, &b);
for (int i = 1; i <= n; ++i) {
scanf("%lf", &u[i]);
}
for (int i = 1; i <= n; ++i) {
scanf("%lf", &v[i]);
}
for (int i = 1; i <= n; ++i) {
q[i] = u[i] + v[i] - u[i] * v[i];
}
LD l = 0, r = 1;
for (int i = 1; i <= T; ++i) {
LD mid = (l + r) / 2;
check(mid);
if (dp[n].a >= a) l = mid;
else r = mid;
}
check(l);
// printf("%.5Lf %.5Lf\n %d %d \n", l, L, dp[n].a, dp[n].b);
printf("%.5lf\n", dp[n].val + l * a + L * b);
return 0;
}