(wqs二分)CF739E Gosha is hunting

传送门
这篇林克卡特树+简单的wqs二分/凸优化是来骗访问量的

Solution

这其实是个 w q s wqs wqs二分套 w q s wqs wqs二分
O ( n a b ) \mathcal{O(nab)} O(nab) d p dp dp很好写
我们要做的是用凸优化,把时间复杂度降到 O ( n log ⁡ a log ⁡ b ) \mathcal{O(n\log a\log b)} O(nlogalogb)
显然这是一个凸函数,为什么呢?

因为你每次多用一个Poke Ball或者一个Ultra Ball能增加的捕捉到的Pokemons的期望一定比前一次的来得少
所以它的导数一定是递减的所以它是凸的
(不要以为递增函数一定不是凸函数,这是片面的理解)

所以我们可以在 a a a这一维上进行 w q s wqs wqs二分,也可以在 b b b这一维上进行
每次 d p dp dp转移的时候就只需要 O ( n ) \mathcal{O(n)} O(n)的时间,每用一个Poke Ball减少 m i d mid mid d p dp dp值,用Ultra Ball也是一样的

Warning

判断 d p dp dp a , b a,b a,b与我们现有的 a , b a,b a,b比较时,要用>=不能用>

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#define T 40
#define N 2010
using namespace std;
typedef double LD;
const LD INF = 1e5;

LD u[N], v[N], q[N], L, R;
int n, a, b;

struct Node{
    LD val;
    int a, b;
    Node(LD V = 0, int A = 0, int B = 0) {
        val = V; a = A; b = B;
    }
    inline bool operator < (const Node &o) const {
        return val < o.val;
    }
    inline Node operator + (const Node &o) const {
        return Node(val + o.val, a + o.a, b + o.b);
    }
}dp[N];


inline void check_agn(LD x, LD y) {
    dp[0] = Node();
    for (int i = 1; i <= n; ++i) {
        dp[i] = Node(-INF, 0, 0);
        dp[i] = max(max(dp[i - 1], dp[i - 1] + Node(q[i] - x - y, 1, 1)), max(dp[i - 1] + Node(u[i] - x, 1, 0), dp[i - 1] + Node(v[i] - y, 0, 1)));
    }
}

inline void check(LD v) {
    L = 0, R = 1;
    for (int i = 1; i <= T; ++i) {
        LD mid = (L + R) / 2;
        check_agn(v, mid);
        if (dp[n].b >= b) L = mid;
        else R = mid;
    }
    check_agn(v, L);
}

int main() {
    scanf("%d%d%d", &n, &a, &b);
    for (int i = 1; i <= n; ++i) {
        scanf("%lf", &u[i]);
    }
    for (int i = 1; i <= n; ++i) {
        scanf("%lf", &v[i]);
    }
    for (int i = 1; i <= n; ++i) {
        q[i] = u[i] + v[i] - u[i] * v[i];
    }
    LD l = 0, r = 1;
    for (int i = 1; i <= T; ++i) {
        LD mid = (l + r) / 2;
        check(mid);
        if (dp[n].a >= a) l = mid;
        else r = mid;
    }
    check(l);
//	printf("%.5Lf %.5Lf\n %d %d \n", l, L, dp[n].a, dp[n].b);
    printf("%.5lf\n", dp[n].val + l * a + L * b);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值