使用keras实现Precise, Recall, F1-socre

实现过程

from keras import backend as K
def Precision(y_true, y_pred):
    """精确率"""
    tp= K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))  # true positives
    pp= K.sum(K.round(K.clip(y_pred, 0, 1))) # predicted positives
    precision = tp/ (pp+ K.epsilon())
    return precision
    
def Recall(y_true, y_pred):
    """召回率"""
    tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives
    pp = K.sum(K.round(K.clip(y_true, 0, 1))) # possible positives
    recall = tp / (pp + K.epsilon())
    return recall
 
def F1(y_true, y_pred):
    """F1-score"""
    precision = Precision(y_true, y_pred)
    recall = Recall(y_true, y_pred)
    f1 = 2 * ((precision * recall) / (precision + recall + K.epsilon()))
    return f1    
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值