实现过程
from keras import backend as K
def Precision(y_true, y_pred):
"""精确率"""
tp= K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives
pp= K.sum(K.round(K.clip(y_pred, 0, 1))) # predicted positives
precision = tp/ (pp+ K.epsilon())
return precision
def Recall(y_true, y_pred):
"""召回率"""
tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives
pp = K.sum(K.round(K.clip(y_true, 0, 1))) # possible positives
recall = tp / (pp + K.epsilon())
return recall
def F1(y_true, y_pred):
"""F1-score"""
precision = Precision(y_true, y_pred)
recall = Recall(y_true, y_pred)
f1 = 2 * ((precision * recall) / (precision + recall + K.epsilon()))
return f1