文章目录
目录
一、可变参数模板
1.可变参数模板
c++11的新特性可变参数模板可以接受多个参数,如下是一个基本可变参数的函数模板:
// Args是一个模板参数包,args是一个函数形参参数包 // 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。 template <class ...Args> void ShowList(Args... args) {}
上面args前面有省略号,所以它就是一个可变参数模板,带省略号的参数称为参数包,它里面包含了0到N个模板参数。我们无法直接获取参数包中的每个参数,只能通过展开来获取。
1.递归展开获取参数包
// 递归终止函数 template <class T> void ShowList(const T& t) { cout << t << endl; } // 展开函数 template <class T, class ...Args> void ShowList(T value, Args... args) { cout << value <<" "; ShowList(args...); } int main() { ShowList(1); ShowList(1, 'A'); ShowList(1, 'A', std::string("sort")); return 0; }
2.逗号表达式获取参数包
template <class T> void PrintArg(T t) { cout << t << " "; } //展开函数 template <class ...Args> void ShowList(Args... args) { int arr[] = { (PrintArg(args), 0)... }; cout << endl; } int main() { ShowList(1); ShowList(1, 'A'); ShowList(1, 'A', std::string("sort")); return 0; }
2.STL容器中emplace相关函数接口:
template<class ... args>
void emplace_back(Args&& ...args);
首先我们看到emplace系列接口,支持模板的可变参数,并且万能引用,那么相对insert和emplace的优势在哪:
std::list< std::pair<int, char> > mylist;
// emplace_back支持可变参数,拿到构建pair对象的参数后自己去创建对象
// 那么在这里我们可以看到除了用法上,和push_back没什么太大的区别
mylist.emplace_back(10, 'a');
mylist.emplace_back(20, 'b');
mylist.emplace_back(make_pair(30, 'c'));
mylist.push_back(make_pair(40, 'd'));
mylist.push_back({ 50, 'e' });
for (auto e : mylist)
cout << e.first << ":" << e.second << endl;
// 下面我们试一下带有拷贝构造和移动构造的bit::string,再试试呢
// 我们会发现其实差别也不到,emplace_back是直接构造了,push_back
// 是先构造,再移动构造
std::list< std::pair<int, bit::string> > mylist;
mylist.emplace_back(10, "sort");
mylist.emplace_back(make_pair(20, "sort"));
mylist.push_back(make_pair(30, "sort"));
mylist.push_back({ 40, "sort"});
二、lambda表达式
1.c++98中的一个例子
在c++98中,如果想要对一个数据集合中的元素排序,可以使用std::sort方法,如果待排序元素为自定义类型,需要用户定义排序时的比较规则
int main()
{
vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };
sort(v.begin(), v.end(), ComparePriceLess());
sort(v.begin(), v.end(), ComparePriceGreater());
}
这样每次为了实现一个算法,都需要重写一个类,如果每次比较逻辑不同,需要写多个类,而且相同类的命名给编程带来很大不方便,所以使用lambda表达式。
2.lambda表达式
2.1lambda表达式语法
书写格式:[capture-lis](parameters)mutable->return-type{statement}
- [capture-list]:捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用
- (parameters):参数列表。与普通函数的参数列表一直,如果不需要参数传递,可以连()一起省略
- mutable:默认情况下,lambda是一个constHanshu ,mutable可以取消其常量下,使用该修饰符时,参数列表不能省略
- ->return type:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时可以省略。返回值类型明确的情况下,也可以省略。由编译器对返回类型进行推到
- statement:函数体,在该函数体内,除了可以使用参数,还可以使用捕获到的变量
注意:在 lambda 函数定义中, 参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空 。因此 C++11 中 最简单的 lambda 函数为: []{} ; 该 lambda 函数不能做任何事情。int a = 3,b=4; auto fun2 = [=, &b](int c)->int{return b += a+ c; };
捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。
- [var]:表示值传递方式捕捉变量var
- [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
- [&var]:表示引用传递捕捉变量var
- [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
- [this]:表示值传递方式捕捉当前的this指针
注意:a. 父作用域指包含lambda函数的语句块b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复d. 在块作用域以外的lambda函数捕捉列表必须为空。
e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。f. lambda表达式之间不能相互赋值,即使看起来类型相同
在底层编译器对lambda表达式的处理方式,完全就是按照函数对象的方式处理的。如果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()
三、包装器
1.fuction包装器
function包装器,也叫做适配器,c++中function本质是一个类模板,也是一个包装器
ret = func(x);
这里的func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能是lambda表达式对象?这些都是可调用的类型,如此多的类型会导致模板效率低下。包装器可以很好的解决上面问题
#include<functional>
//类模板原型
template<class T> function;
template<class Ret,class ...Args>
class function<Ret(Args...)>;
//Ret:被调用函数的返回值类型
//Args...:被调用函数的形参
使用方法如下:
#include<functional>
int f(int a,int b)
{
return a+b;
}
struct Functor
{
public:
int operator()(int a,int b)
{
return a+b;
}
};
class plus
{
public:
static int plusi(int a,int b)
{
return a+b;
}
double plusd(double a, double b)
{
return a+b;
}
};
int main()
{
//函数名 函数指针
std::function<int(int,int)> func1 = f;
cout<<func1(1,2);<<endl;
//函数指针
std::function<int(int,int)> func2 = Functor();
cout<<func2(1,2)<<endl;
//lambda表达式
std::function<int(int,int)> func3 = [](const int a,const int b){return a+b;};
cout<<func3(1,2)<<endl;
//类的成员函数
std::function<int(int, int)> func4 = &Plus::plusi;
cout << func4(1, 2) << endl;
std::function<double(Plus, double, double)> func5 = &Plus::plusd;
cout << func5(Plus(), 1.1, 2.2) << endl;
}
四、线程库
1.thread类简单介绍
在c++11之前,涉及到多线程问题,都是和平台相关的,wins和linux下各有自己的接口,这使代码的可移植性比较差,在c++11中最重要的特性就是对线程进行支持了,使用是不需要依赖第三方库。而且在原子操作中还引入了原子类
#include<thread>
- thread():构造一个线程对象,没有关联任何线程函数,即没有启动线程
- thread(fn,args1,arg2...)构造一个线程对象,并关联线程函数fn,args1,args2...为线程函数参数
- get_id()获取线程id
- joinable():线程是否还在执行,joinable代表的是一个正在执行中的线程
- join()该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行
- detach()在创建线程对象后马上调用,用于把被创建线程和线程对象分离,分离的线程变为后台线程,创建的线程”死活“与主线程无关
1. 线程是操作系统中的一个概念, 线程对象可以关联一个线程,用来控制线程以及获取线程的状态 2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。 3.当创建一个线程对象后,并且给线程关联线程函数,该线程就启动,与主线程一起运行。线程函数一般可按照以下三种方式提供: 函数指针 lambda表达式 函数对象#include<iostream> using namespace std; #include<thread> void ThreadFunc(int a) { } class TF { public: void operator()() { cout<<"thread3"<<endl; } }; int main() { thread t1(ThreadFunc,10); //线程函数为函数指针 thread t2([]{cout<<"thread t2"<<endl;}); //线程函数为lambda表达式 TF tf; thread t3(tf); //线程函数为函数对象 t1.join(); ... }
- 4.thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个线程关联线程的状态转移给其他线程对象,转移期间不影响线程的执行。
- 可以通过joinable()函数判断线程是否是有效的,如果是以下情况,则线程无效
- 可以采用无参构造函数构造的线程对象
- 线程对象的状态已经转移给其他线程对象
- 线程已经join或者detach结束
2.并发和并行的区别
并发(concurrent):一个cpu处理器处理多个线程任务(宏观上是同时处理多个任务,微观上是cpu在多个线程之间快速的交替执行cpu把运行时间划分称若干个微小的时间段,公平的分配给各个线程执行,在一个时间段的线程运行时,其他线程处于挂起状态,这种称为并发。
并行(parallel):并行是多个cpu处理器处理多个线程任务(当一个cpu执行一个线程时,另一个cpu可以执行另一个线程,两个线程互不抢占cpu资源,可以同时进行,这就称为并行)
3.线程函数参数
线程函数的参数也是以值拷贝的方式拷贝到线程栈空间中的,因此,即使参数为引用类型,在线程中修改后也不能修改外部实参,因为其实引用的是线程栈中的拷贝,而不是外部实参。
4.原子性操作库
原子操作:使得线程间数据的同步变得高效。在c++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥访问,更为普遍的,可以使用atomic类模板,定义出所需的任意原子类型。#include<atomic> atomic<T> t; //声明一个类型为T的原子类型变量t
注:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,在c++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造,移动构造,operator=等。为了防止意外,标准库已经对这些进行了删除
#include<iostream>
#include<thread>
#include<atomic>
using namespace std;
atomic_long sum{0};
void fun(size_t num)
{
for(size_t i = 0; i<num;++i)
sum++; //原子操作
}
int main()
{
thread t1(fun,10000);
thread t2(fun,10000);
//....
}
5.锁
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置为对应的原子类型即可,即高效又不容易死锁,但是有些情况下,我们需要保证一段代码的安全性,就只能通过锁的方式进行控制。但是锁控制不好的时候,可能会造成死锁,最常见的比如锁中间代码返回,或者在锁的范围内抛异常。因此,c++11采用RAII方式对锁进行封装,即lock_guard和unique_lock
1.std::mutex
c++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能移动,mutex最常用的三个函数:
- lock()上锁:锁住互斥量
- unlock() 解锁:释放对互斥量的所有权
- try_lock() 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞
- 注意,线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
- 线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
2.std::recursive_mutex
3.lock_guard
lock_guard是c++11中定义的模板类,
lock_guard 类模板主要是通过 RAII 的方式,对其管理的互斥量进行了封 装 ,在需要加锁的地方,只需要用上述介绍的 任意互斥体实例化一个 lock_guard ,调用构造函数 成功上锁,出作用域前, lock_guard 对象要被销毁,调用析构函数自动解锁,可以有效避免死锁 问题 。lock_guard缺陷:太单一,用户无法对锁控制
4.unique_lock
与lock_guard类似,unique_lock类模板也是采用RAII方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝,在构造(或移动move赋值时), unique_lock对象需要传递一个mutex对象作为它的参数,新创建的unique_lock对象负责传入的mutex对象的上锁和解锁操作。使用以上类型互斥量实例化unqie_lock的对象时,自动调用构造上锁,unique_lock对象销毁自动调用析构函数解锁,可以很方便的防止死锁问题。与lock_guard不同的是,unique_lock更加灵活,提供了更多成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有
- 权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同。mutex(返回当前unique_lock所管理的互斥量的指针)。
5.支持两个线程交替打印,一个打印奇数,一个打印偶数
使用条件变量来实现。这里有两个问题:1.如何保证某个线程先运行 2.如何保证交替打印
1.如何保证某个线程先运行
线程的运行顺序是由调度器决定的,不一定谁先创建谁就先运行,所以需要一把锁,谁先抢占了锁,谁就可以先运行,另外一个线程阻塞。如果t1先抢到锁,t1先运行,t2阻塞。 如果t2抢到了锁,t2先运行, 但是这里可以加一个wait进行阻塞,wait阻塞时候会自动解锁,保证了t1先运行。2.如何保证两个线程进交替运行假设t1先获取到了锁,t2阻塞在锁上,t1打印奇数,++x变成偶数,notify t2,但是没有线程wait,又抢占到了锁,继续++x,这个时候就有问题。直到出了作用域解锁,t2获取到锁。所以这里使用一个判断, 如果在t1抢到锁之后,判断当前是偶数,那么就wait,并且notify t2,解锁通知t2开始运行。 t2抢到锁之后,++x,notify t1,如果再次抢到锁,判断当前是奇数,那么wait并且解锁,通知t1开始运行。
int main()
{
mutex mtx ; //只有一把锁
condition_variable cv;
int n = 100;
int x = 1;
thread t1([&,n]()
{
while(1)
{
unique_lock<mutex> lock(mtx);
if(x>100)
break;
if(x%2 == 0) //阻塞
cv.wait(lock);
++x;
cv.notift_one();
}
});
thread t2([&,n]()
{
while(1)
{
unique_lock<mutex> lock(mtx);
if(x>100)
break;
if(x%2 != 0)
cv.wait(lock);
++x;
cv.notify_one();
}
});
t1.join();
t2.join();
return 0;
}