task4_模型调参

可以参考 https://zhuanlan.zhihu.com/p/258964754?utm_source=wechat_session

简单建模部分已掌握,模型调参部分三个模型调参方法理论有所了解,代码目前仍未运行顺利,希望会有大佬给讲解一下!

import pandas as pd
import numpy as np
from sklearn.metrics import f1_score

import os
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")
#reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
    start_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df

1、数据读取和预处理

# 读取数据
data = pd.read_csv(r'../task02_数据分析/train.csv')
# 简单预处理
data_list = []
for items in data.values:
    data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])

data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']

data = reduce_mem_usage(data)
Memory usage of dataframe is 157.93 MB
Memory usage after optimization is: 39.67 MB
Decreased by 74.9%

2、简单建模

from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.drop(['id','label'], axis=1)
y_train = data['label']

# 5折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
#因为树模型中没有f1-score评价指标,所以需要自定义评价指标,在模型迭代中返回验证集f1-score变化情况。
def f1_score_vali(preds, data_vali):
    labels = data_vali.get_label()
    preds = np.argmax(preds.reshape(4, -1), axis=0)
    score_vali = f1_score(y_true=labels, y_pred=preds, average='macro')
    return 'f1_score', score_vali, True
#使用Lightgbm进行建模
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)

params = {
    "learning_rate": 0.1,
    "boosting": 'gbdt',  
    "lambda_l2": 0.1,
    "max_depth": -1,
    "num_leaves": 128,
    "bagging_fraction": 0.8,
    "feature_fraction": 0.8,
    "metric": None,
    "objective": "multiclass",
    "num_class": 4,
    "nthread": 10,
    "verbose": -1,
}

"""使用训练集数据进行模型训练"""
model = lgb.train(params, 
                  train_set=train_matrix, 
                  valid_sets=valid_matrix, 
                  num_boost_round=2000, 
                  verbose_eval=50, 
                  early_stopping_rounds=200,
                  feval=f1_score_vali)
Training until validation scores don't improve for 200 rounds
[50]	valid_0's multi_logloss: 0.0494294	valid_0's f1_score: 0.955275
[100]	valid_0's multi_logloss: 0.044516	valid_0's f1_score: 0.962034
[150]	valid_0's multi_logloss: 0.0469118	valid_0's f1_score: 0.964693
[200]	valid_0's multi_logloss: 0.0489836	valid_0's f1_score: 0.965075
[250]	valid_0's multi_logloss: 0.0502699	valid_0's f1_score: 0.965345
Early stopping, best iteration is:
[82]	valid_0's multi_logloss: 0.0439009	valid_0's f1_score: 0.961164
#对验证集进行预测
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
未调参前lightgbm单模型在验证集上的f1:0.9611644167108008
#更进一步的,使用5折交叉验证进行模型性能评估
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
    
    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)

    params = {
                "learning_rate": 0.1,
                "boosting": 'gbdt',  
                "lambda_l2": 0.1,
                "max_depth": -1,
                "num_leaves": 128,
                "bagging_fraction": 0.8,
                "feature_fraction": 0.8,
                "metric": None,
                "objective": "multiclass",
                "num_class": 4,
                "nthread": 10,
                "verbose": -1,
            }
    
    model = lgb.train(params, 
                      train_set=train_matrix, 
                      valid_sets=valid_matrix, 
                      num_boost_round=2000, 
                      verbose_eval=100, 
                      early_stopping_rounds=200,
                      feval=f1_score_vali)
    
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)
    
    val_pred = np.argmax(val_pred, axis=1)
    cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
    print(cv_scores)

print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
************************************ 1 ************************************
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0408155	valid_0's f1_score: 0.966797
[200]	valid_0's multi_logloss: 0.0437957	valid_0's f1_score: 0.971239
Early stopping, best iteration is:
[96]	valid_0's multi_logloss: 0.0406453	valid_0's f1_score: 0.967452
[0.9674515729721614]
************************************ 2 ************************************
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0472933	valid_0's f1_score: 0.965828
[200]	valid_0's multi_logloss: 0.0514952	valid_0's f1_score: 0.968138
Early stopping, best iteration is:
[87]	valid_0's multi_logloss: 0.0467472	valid_0's f1_score: 0.96567
[0.9674515729721614, 0.9656700872844327]
************************************ 3 ************************************
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0378154	valid_0's f1_score: 0.971004
[200]	valid_0's multi_logloss: 0.0405053	valid_0's f1_score: 0.973736
Early stopping, best iteration is:
[93]	valid_0's multi_logloss: 0.037734	valid_0's f1_score: 0.970004
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769]
************************************ 4 ************************************
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0495142	valid_0's f1_score: 0.967106
[200]	valid_0's multi_logloss: 0.0542324	valid_0's f1_score: 0.969746
Early stopping, best iteration is:
[84]	valid_0's multi_logloss: 0.0490886	valid_0's f1_score: 0.965566
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014]
************************************ 5 ************************************
Training until validation scores don't improve for 200 rounds
[100]	valid_0's multi_logloss: 0.0412544	valid_0's f1_score: 0.964054
[200]	valid_0's multi_logloss: 0.0443025	valid_0's f1_score: 0.965507
Early stopping, best iteration is:
[96]	valid_0's multi_logloss: 0.0411855	valid_0's f1_score: 0.963114
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_scotrainre_list:[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_score_mean:0.9663612141019279
lgb_score_std:0.0022854824074775683

3、模型调参

1. 贪心调参

先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。

这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。

需要注意的是在树模型中参数调整的顺序,也就是各个参数对模型的影响程度,这里列举一下日常调参过程中常用的参数和调参顺序:

①:max_depth、num_leaves
②:min_data_in_leaf、min_child_weight
③:bagging_fraction、 feature_fraction、bagging_freq
④:reg_lambda、reg_alpha
⑤:min_split_gain

# num_leaves
best_leaves = dict()
for leaves in num_leaves:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_leaves[leaves] = score
'num_leaves'

2. 网格搜索

sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。

同样以Lightgbm算法为例,进行网格搜索调参:

"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV

def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0, 
                       feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001, 
                       min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
    # 设置5折交叉验证
    cv_fold = KFold(n_splits=5, shuffle=True, random_state=2021)

    model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
                                   n_estimators=n_estimators,
                                   num_leaves=num_leaves,
                                   max_depth=max_depth,
                                   bagging_fraction=bagging_fraction,
                                   feature_fraction=feature_fraction,
                                   bagging_freq=bagging_freq,
                                   min_data_in_leaf=min_data_in_leaf,
                                   min_child_weight=min_child_weight,
                                   min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda,
                                   reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )

    f1 = make_scorer(f1_score, average='micro')
    grid_search = GridSearchCV(estimator=model_lgb, 
                               cv=cv_fold,
                               param_grid=param_grid,
                               scoring=f1

                              )
    grid_search.fit(X_train, y_train)

    print('模型当前最优参数为:{}'.format(grid_search.best_params_))
    print('模型当前最优得分为:{}'.format(grid_search.best_score_))

3.贝叶斯调参

在使用之前需要先安装包bayesian-optimization

pip install bayesian-optimization
Collecting bayesian-optimizationNote: you may need to restart the kernel to use updated packages.

  Downloading bayesian-optimization-1.2.0.tar.gz (14 kB)
Requirement already satisfied: numpy>=1.9.0 in c:\users\gnzha\anaconda3\lib\site-packages (from bayesian-optimization) (1.19.2)
Requirement already satisfied: scipy>=0.14.0 in c:\users\gnzha\anaconda3\lib\site-packages (from bayesian-optimization) (1.5.2)
Requirement already satisfied: scikit-learn>=0.18.0 in c:\users\gnzha\anaconda3\lib\site-packages (from bayesian-optimization) (0.23.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\gnzha\anaconda3\lib\site-packages (from scikit-learn>=0.18.0->bayesian-optimization) (2.1.0)
Requirement already satisfied: joblib>=0.11 in c:\users\gnzha\anaconda3\lib\site-packages (from scikit-learn>=0.18.0->bayesian-optimization) (0.17.0)
Building wheels for collected packages: bayesian-optimization
  Building wheel for bayesian-optimization (setup.py): started
  Building wheel for bayesian-optimization (setup.py): finished with status 'done'
  Created wheel for bayesian-optimization: filename=bayesian_optimization-1.2.0-py3-none-any.whl size=11690 sha256=f09f6ca96cc2dea5576c6fd39a3b1c291f8e9f3c69dbc1f99cf15cf96b0c852d
  Stored in directory: c:\users\gnzha\appdata\local\pip\cache\wheels\37\fa\19\f93e793d3944567a60b3ab93b446cf7370cc82c60c1d1c613f
Successfully built bayesian-optimization
Installing collected packages: bayesian-optimization
Successfully installed bayesian-optimization-1.2.0

贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。

贝叶斯调参的步骤如下:

  • 定义优化函数(rf_cv)

  • 建立模型

  • 定义待优化的参数

  • 得到优化结果,并返回要优化的分数指标

from sklearn.model_selection import cross_val_score
from sklearn.metrics import make_scorer

"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, 
              min_child_weight, min_split_gain, reg_lambda, reg_alpha):
    # 建立模型
    model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4,
                                   learning_rate=0.1, n_estimators=5000,
                                   num_leaves=int(num_leaves), max_depth=int(max_depth), 
                                   bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
                                   bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
                                   min_child_weight=min_child_weight, min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda, reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )
    f1 = make_scorer(f1_score, average='micro')
    val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean()

    return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
    rf_cv_lgb, 
    {
        'num_leaves':(10, 200),
        'max_depth':(3, 20),
        'bagging_fraction':(0.5, 1.0),
        'feature_fraction':(0.5, 1.0),
        'bagging_freq':(0, 100),
        'min_data_in_leaf':(10,100),
        'min_child_weight':(0, 10),
        'min_split_gain':(0.0, 1.0),
        'reg_alpha':(0.0, 10),
        'reg_lambda':(0.0, 10),
    }
)

"""开始优化"""
bayes_lgb.maximize(n_iter=10)
"""显示优化结果"""
bayes_lgb.max

参数优化完成后,我们可以根据优化后的参数建立新的模型,降低学习率并寻找最优模型迭代次数

"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数"""
base_params_lgb = {
                    'boosting_type': 'gbdt',
                    'objective': 'multiclass',
                    'num_class': 4,
                    'learning_rate': 0.01,
                    'num_leaves': 138,
                    'max_depth': 11,
                    'min_data_in_leaf': 43,
                    'min_child_weight':6.5,
                    'bagging_fraction': 0.64,
                    'feature_fraction': 0.93,
                    'bagging_freq': 49,
                    'reg_lambda': 7,
                    'reg_alpha': 0.21,
                    'min_split_gain': 0.288,
                    'nthread': 10,
                    'verbose': -1,
}

cv_result_lgb = lgb.cv(
    train_set=train_matrix,
    early_stopping_rounds=1000, 
    num_boost_round=20000,
    nfold=5,
    stratified=True,
    shuffle=True,
    params=base_params_lgb,
    feval=f1_score_vali,
    seed=0
)
print('迭代次数{}'.format(len(cv_result_lgb['f1_score-mean'])))
print('最终模型的f1为{}'.format(max(cv_result_lgb['f1_score-mean'])))

模型参数已经确定,建立最终模型并对验证集进行验证

import lightgbm as lgb
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]

    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)

    params = {
                'boosting_type': 'gbdt',
                'objective': 'multiclass',
                'num_class': 4,
                'learning_rate': 0.01,
                'num_leaves': 138,
                'max_depth': 11,
                'min_data_in_leaf': 43,
                'min_child_weight':6.5,
                'bagging_fraction': 0.64,
                'feature_fraction': 0.93,
                'bagging_freq': 49,
                'reg_lambda': 7,
                'reg_alpha': 0.21,
                'min_split_gain': 0.288,
                'nthread': 10,
                'verbose': -1,
    }

    model = lgb.train(params, train_set=train_matrix, num_boost_round=4833, valid_sets=valid_matrix, 
                      verbose_eval=1000, early_stopping_rounds=200, feval=f1_score_vali)
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)
    val_pred = np.argmax(val_pred, axis=1)
    cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
    print(cv_scores)

print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))

模型调参小总结

  • 集成模型内置的cv函数可以较快的进行单一参数的调节,一般可以用来优先确定树模型的迭代次数

  • 数据量较大的时候(例如本次项目的数据),网格搜索调参会特别特别慢,不建议尝试

  • 集成模型中原生库和sklearn下的库部分参数不一致,需要注意,具体可以参考xgb和lgb的官方API


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Leslie模型是一个深度学习模型调参是为了找到模型的最佳超参数值。在Leslie模型,常见的超参数包括学习率、批量大小、动量和权重衰减。学习率决定了模型在每次更新权重时的步长,批量大小决定了每次迭代使用的样本数量,动量可以帮助模型更快地收敛,而权重衰减可以控制模型的复杂度。 为了找到最佳超参数值,可以使用梯度下降等优化算法来进行调参。梯度下降是一种常用的优化算法,通过计算损失函数对于每个超参数的梯度来更新超参数的值,从而使得模型能够逐渐收敛到最佳值。 此外,对于Leslie模型来说,隐藏层的层数也是一个重要的超参数。隐藏层的层数决定了模型的复杂性,一般来说,全连接层越多越好,但是必须有非线性激活函数和Dropout来避免过拟合。对于复杂模型来说,设置1-2层的全连接层通常就足够了。 因此,调参Leslie模型可以通过调整学习率、批量大小、动量、权重衰减和隐藏层的层数来找到最佳超参数值,从而使得模型能够获得最佳结果。 #### 引用[.reference_title] - *1* [ 天桥调参师秘籍:一份深度学习超参微调技术指南 ...](https://blog.csdn.net/weixin_33713707/article/details/89551812)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [天桥调参师秘籍:一份深度学习超参微调技术指南](https://blog.csdn.net/weixin_33745006/article/details/112013213)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [全连接层调参tricks](https://blog.csdn.net/weixin_42419611/article/details/116756820)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值