零基础入门数据挖掘-心跳信号分类预测

https://tianchi.aliyun.com/competition/entrance/531883/information.

task1

数据和baseline下载下来后可直接运行,装上几个包就行了。阿里天池实验室不好用,还是用自己的jupyter吧。

task2

Train_data.describe()

submit.csv优化
在这里插入图片描述

df[df.iloc[:,1:]>0.9]=1
df[df.iloc[:,1:]<0.1]=0
df.to_csv('submit.csv',index=False)

因为目标函数计算的是概率差值,我们将大于0.9的概率设为1,将低于0.1的概率设为0。提交后分数降低到485。
在这里插入图片描述

task3

数据预处理 :
时间序列数据格式处理
加入时间步特征time
特征工程 :
时间序列特征构造
特征筛选
使用 tsfresh
进行时间序列特征处理

# 对心电特征进行行转列处理,同时为每个心电信号加入时间步特征time
train_heartbeat_df = data_train["heartbeat_signals"].str.split(",", expand=True).stack()
train_heartbeat_df = train_heartbeat_df.reset_index()
train_heartbeat_df = train_heartbeat_df.set_index("level_0")
train_heartbeat_df.index.name = None
train_heartbeat_df.rename(columns={"level_1":"time", 0:"heartbeat_signals"}, inplace=True)
train_heartbeat_df["heartbeat_signals"] = train_heartbeat_df["heartbeat_signals"].astype(float)

train_heartbeat_df
# 将处理后的心电特征加入到训练数据中,同时将训练数据label列单独存储
data_train_label = data_train["label"]
data_train = data_train.drop("label", axis=1)
data_train = data_train.drop("heartbeat_signals", axis=1)
data_train = data_train.join(train_heartbeat_df)

data_train

from tsfresh import extract_features

# 特征提取
train_features = extract_features(data_train, column_id='id', column_sort='time')
train_features

from tsfresh.utilities.dataframe_functions import impute
from tsfresh import select_features

# 按照特征和数据label之间的相关性进行特征选择
train_features_filtered = select_features(train_features, data_train_label)

train_features_filtered

task4

集成模型

主要包括Bagging和Boosting,Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个更加强大的分类。两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果。常见的基于Baggin思想的集成模型有:随机森林、基于Boosting思想的集成模型有:Adaboost、GBDT、XgBoost、LightGBM等。

贪心调参

先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。

这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。

from sklearn.model_selection import cross_val_score
# 调objective
best_obj = dict()
for obj in objective:
    model = LGBMRegressor(objective=obj)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_obj[obj] = score

# num_leaves
best_leaves = dict()
for leaves in num_leaves:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_leaves[leaves] = score

# max_depth
best_depth = dict()
for depth in max_depth:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
                          num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
                          max_depth=depth)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_depth[depth] = score

"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
"""

网格搜索

sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。

"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV

def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0, 
                       feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001, 
                       min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
    # 设置5折交叉验证
    cv_fold = KFold(n_splits=5, shuffle=True, random_state=2021)

    model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
                                   n_estimators=n_estimators,
                                   num_leaves=num_leaves,
                                   max_depth=max_depth,
                                   bagging_fraction=bagging_fraction,
                                   feature_fraction=feature_fraction,
                                   bagging_freq=bagging_freq,
                                   min_data_in_leaf=min_data_in_leaf,
                                   min_child_weight=min_child_weight,
                                   min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda,
                                   reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )

    f1 = make_scorer(f1_score, average='micro')
    grid_search = GridSearchCV(estimator=model_lgb, 
                               cv=cv_fold,
                               param_grid=param_grid,
                               scoring=f1

                              )
    grid_search.fit(X_train, y_train)

    print('模型当前最优参数为:{}'.format(grid_search.best_params_))
    print('模型当前最优得分为:{}'.format(grid_search.best_score_))
 
 lgb_params = {'num_leaves': range(10, 80, 5), 'max_depth': range(3,10,2)}
get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=None, max_depth=None, min_data_in_leaf=20, 
                   min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0, 
                   min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)

"""num_leaves为30,max_depth为7,进一步细调num_leaves和max_depth"""
lgb_params = {'num_leaves': range(25, 35, 1), 'max_depth': range(5,9,1)}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=None, max_depth=None, min_data_in_leaf=20, 
                   min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0, 
                   min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)

"""
确定min_data_in_leaf为45,min_child_weight为0.001 ,下面进行bagging_fraction、feature_fraction和bagging_freq的调参
"""
lgb_params = {'bagging_fraction': [i/10 for i in range(5,10,1)], 
              'feature_fraction': [i/10 for i in range(5,10,1)],
              'bagging_freq': range(0,81,10)
             }
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45, 
                   min_child_weight=0.001,bagging_fraction=None, feature_fraction=None, bagging_freq=None, 
                   min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)

"""
确定bagging_fraction为0.4、feature_fraction为0.6、bagging_freq为 ,下面进行reg_lambda、reg_alpha的调参
"""
lgb_params = {'reg_lambda': [0,0.001,0.01,0.03,0.08,0.3,0.5], 'reg_alpha': [0,0.001,0.01,0.03,0.08,0.3,0.5]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45, 
                   min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40, 
                   min_split_gain=0, reg_lambda=None, reg_alpha=None, param_grid=lgb_params)

"""
确定reg_lambda、reg_alpha都为0,下面进行min_split_gain的调参
"""
lgb_params = {'min_split_gain': [i/10 for i in range(0,11,1)]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45, 
                   min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40, 
                   min_split_gain=None, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)

 """
参数确定好了以后,我们设置一个比较小的learning_rate 0.005,来确定最终的num_boost_round
"""
# 设置5折交叉验证
# cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True, )
final_params = {
                'boosting_type': 'gbdt',
                'learning_rate': 0.01,
                'num_leaves': 29,
                'max_depth': 7,
                'objective': 'multiclass',
                'num_class': 4,
                'min_data_in_leaf':45,
                'min_child_weight':0.001,
                'bagging_fraction': 0.9,
                'feature_fraction': 0.9,
                'bagging_freq': 40,
                'min_split_gain': 0,
                'reg_lambda':0,
                'reg_alpha':0,
                'nthread': 6
               }

cv_result = lgb.cv(train_set=lgb_train,
                   early_stopping_rounds=20,
                   num_boost_round=5000,
                   nfold=5,
                   stratified=True,
                   shuffle=True,
                   params=final_params,
                   feval=f1_score_vali,
                   seed=0,
                  )                

贝叶斯调参

贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。

from sklearn.model_selection import cross_val_score

"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, 
              min_child_weight, min_split_gain, reg_lambda, reg_alpha):
    # 建立模型
    model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4,
                                   learning_rate=0.1, n_estimators=5000,
                                   num_leaves=int(num_leaves), max_depth=int(max_depth), 
                                   bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
                                   bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
                                   min_child_weight=min_child_weight, min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda, reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )
    f1 = make_scorer(f1_score, average='micro')
    val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean()

    return val

from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
    rf_cv_lgb, 
    {
        'num_leaves':(10, 200),
        'max_depth':(3, 20),
        'bagging_fraction':(0.5, 1.0),
        'feature_fraction':(0.5, 1.0),
        'bagging_freq':(0, 100),
        'min_data_in_leaf':(10,100),
        'min_child_weight':(0, 10),
        'min_split_gain':(0.0, 1.0),
        'reg_alpha':(0.0, 10),
        'reg_lambda':(0.0, 10),
    }
)

"""开始优化"""
bayes_lgb.maximize(n_iter=10)

调参总结

集成模型内置的cv函数可以较快的进行单一参数的调节,一般可以用来优先确定树模型的迭代次数。
数据量较大的时候(例如本次项目的数据),网格搜索调参会特别特别慢,不建议尝试。
集成模型中原生库和sklearn下的库部分参数不一致,需要注意,具体可以参考xgb和lgb的官方API。

task5

模型融合

  1. 结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候。有一个很重要的条件是模型结果的得分要比较近似但结果的差异要比较大,这样的结果融合往往有比较好的效果提升。如果不满足这个条件带来的效果很低,甚至是负效果。
# 加权融合模型,如果w没有变,就是均值融合
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result

# 初始权重,可以进行自定义,这里我们随便设置一个权重
w = [0.2, 0.3, 0.5]

val_pre = Weighted_method(val_rf,val_lgb,val_nn,w)
MAE_Weighted = mean_absolute_error(y_val,val_pre)
print('MAE of Weighted of val:',MAE_Weighted)
  1. 特征层面的融合,这个层面叫融合融合并不准确,主要是队伍合并后大家可以相互学习特征工程。如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。
    3.模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加stacking,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。
## Stacking

## 第一层
train_rf_pred = model_rf.predict(X_train)
train_lgb_pred = model_lgb.predict(X_train)
train_nn_pred = model_nn.predict(X_train)

stacking_X_train = pd.DataFrame()
stacking_X_train['Method_1'] = train_rf_pred
stacking_X_train['Method_2'] = train_lgb_pred
stacking_X_train['Method_3'] = train_nn_pred

stacking_X_val = pd.DataFrame()
stacking_X_val['Method_1'] = val_rf
stacking_X_val['Method_2'] = val_lgb
stacking_X_val['Method_3'] = val_nn

stacking_X_test = pd.DataFrame()
stacking_X_test['Method_1'] = subA_rf
stacking_X_test['Method_2'] = subA_lgb
stacking_X_test['Method_3'] = subA_nn
# 第二层是用random forest
model_lr_stacking = build_model_rf(stacking_X_train,y_train)

## 训练集
train_pre_Stacking = model_lr_stacking.predict(stacking_X_train)
print('MAE of stacking:',mean_absolute_error(y_train,train_pre_Stacking))

## 验证集
val_pre_Stacking = model_lr_stacking.predict(stacking_X_val)
print('MAE of stacking:',mean_absolute_error(y_val,val_pre_Stacking))

## 预测集
print('Predict stacking...')
subA_Stacking = model_lr_stacking.predict(stacking_X_test)
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值