Jupyter Notebook kernel 无法启动/重启等问题解决汇总

本文详细记录了解决Windows10环境下JupyterNotebook启动Kernel失败的问题,包括排查方法、尝试的解决方案及最终解决步骤。通过安装缺失的prompt_toolkit和Flask-WTF库,成功解决了Kernel启动不成功的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jupyter Notebook问题描述

我的运行环境

系统:

 - Windows 10
 - ipykernel 5.0.0
 - ipython 7.0.1
 - jupyter 1.0.0
 - Python 3.6.7rc1
 - TensorFlow 1.9

[ √ ] 需要特别说明的是,我的win10下python安装是直接安装的,不是anaconda环境

问题描述

运行前提: python环境依赖安装成功!
在Win10系统下,cmd终端运行

C:\Users\xxx> jupyter notebook

跳转到浏览器,打开后缀为.ipynb的文件,右上角总是显示

kernel starting, please wait

或者,点击kernel选项下的restart等选项,总是无法正常启动


查询的解决办法

现列出查询到的解决办法,对我没有用处,也许对你有所帮助,仅供参考!

方法1

  • 链接
    https://blog.csdn.net/buct_zc/article/details/80317874
  • 方法描述
  1. 首先使用jupyter kernelspec list查看安装的内核和位置
  2. 进入安装内核目录打开kernel.jason文件,查看Python编译器的路径
  3. 如果不正确修改为正确的安装路径,我修改后的路径为: “D:\Program Files\Anaconda3\envs\tensorflow\python.exe”
  4. 重启 jupyter notebook:jupyter notebook
  • 问题反馈
    我个人电脑已经正常运行jupyter notebook,现提供未经此方法修改的kernel.jason原文件!
{
  "argv": [
    "python",
    "-m",
    "ipykernel_launcher",
    "-f",
    "{connection_file}"
  ],
 "display_name": "Python 3",
 "language": "python"
}

按照此方法的修改方法,应该修改为:

{
  "argv": [
    "D:\\Program Files\\Anaconda3\\envs\\tensorflow\\python.exe",
    "-m",
    "ipykernel_launcher",
    "-f",
    "{connection_file}"
  ],
 "display_name": "Python 3",
 "language": "python"
}

但是,我修改以后没有任何作用,问题依然存在,而且最终正常运行以后查看kerner.jason文件也没有做任何修改,所以推测是此博主在python安装配置过程出现了问题,或者系统中安装了多个python版本,因此需要在jupyter notebook中特别指定python路径!

方法2

  • 链接
    https://blog.csdn.net/buct_zc/article/details/80317874
  • 方法描述
    重新安装jupyter notebook,具体步骤为
  1. 打开:anaconda prompt
  2. 卸载:conda uninstall jupyter notebook
  3. 安装:conda install jupyter notebook
  • 问题反馈
    由于我没有利用anaconda安装python环境,这里不做评述。

方法3

  • 链接
    https://github.com/jupyter/notebook/issues/3708
  • 方法描述
    按照其他博客的说明,可以直接执行:
ipython kernel install --user

github提供的完整方法是:

conda create -n py36 python=3.6   # step 1
source activate py36              # step 2
conda install notebook ipykernel  # step 3
ipython kernel install --user	  # step 4
  • 问题反馈
    这里问题解决方法是针对kernel的安装过程中出现了问题,同样是针对anaconda安装方法,另外下面是python2的步骤
conda create -n py27 python=2.7   # step 1
source activate py27              # step 2
conda install notebook ipykernel  # step 3
ipython kernel install --user	  # step 4

我的解决思路

作为一个较少使用jupyter notebook的老哥(其实是懒的用,喜欢在项目下加个test.py直接撸代码),鼓捣一会才发现,出现的问题都是会在win终端下显示出来的!(我勒个去,傻笑一个)。
先列出来按照网上的方法安装时出现的问题:
图1 python -m ipykernel install --user
这个时候,已经出现问题所在了,最后一行:

ModuleNotFoundError: No module named 'prompt_toolkit.formatted_text'

我一开始并没有注意到这行,如果你看到了这里,你可以试着查看你的cmd终端显示的什么错误,而不是直接按照网上的说法复制粘贴执行代码。
我的jupyter notebook总是运行显示正在启动或重启kernel无效,正是由于这个问题导致的,解决方法这里有说:
github上的prompt_toolkit错误解决方法
问题是没有安装prompt_toolkit,那么安装吧,在cmd下pip安装就好了:

pip install --upgrade prompt-toolkit==2.0.4

安装完以后还是有问题,继续安装:

pip install Flask-WTF

安装完这俩以后,运行jupyter notebook竟然直接好了,看来不是kernel问题,只是自己电脑环境依赖没有安装完整。


嘿,总结一下~~~

要善于发现属于自己的问题,网上信息杂乱,不可盲目跟风!!


### Jupyter Notebook 单元格显示 `in*` 的原因及解决方案 当 Jupyter Notebook 中的单元格状态长时间停留在 `In[*]`,这通常意味着内核正在处理该单元格中的代码,尚未完成执行。如果这种情况持续时间过长,则可能存在某些问题。 #### 可能的原因分析 1. **资源占用过高**:运行的代码可能消耗了大量的计算资源,导致响应变慢。 2. **无限循环或递归错误**:程序逻辑存在缺陷,可能导致死循环或其他形式的阻塞操作[^1]。 3. **依赖库加载失败**:某些外部库未能成功导入,特别是涉及到 C 或 Fortran 编译扩展的情况[^3]。 4. **网络请求未返回**:如果有涉及远程服务器的数据获取操作,而目标地址不可达时也会造成等待现象。 #### 解决方法汇总 ##### 方法一:重启内核并重试 最简单有效的方式就是尝试重启一次 IPython 内核 (Kernel -> Restart),之后再次执行有问题的代码块来观察是否有改善。 ##### 方法二:优化代码性能 对于耗时较长的任务可以考虑分批次读取数据、减少不必要的重复运算以及采用更高效的算法实现方式等手段提高效率。 ##### 方法三:检查环境配置 确认当前使用的 Python 版本及其所关联的各种第三方包版本号是否匹配良好;必要时可以通过创建新的虚拟环境中隔离测试不同组合下的表现差异。 ##### 方法四:排查特定异常情况 针对可能出现的具体报错信息进一步定位根源所在,比如查看是否存在类似 "ImportError: DLL load failed while importing error" 这样的提示,并按照相应指导修复缺失项。 ```bash # 更新 conda 和 pip 工具链至最新稳定版 conda update -n base conda pip install --upgrade pip setuptools wheel ``` ##### 方法五:调整前端设置 有时浏览器端的一些参数也会影响交互体验,适当调节页面刷新频率或者禁用部分插件可能会有所帮助。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值