利用matlab的newff构建BP神经网络来实现数据的逼近和拟合

假设P是原始数据向量;

T是对应的目标向量;

现在需要通过神经网络来实现P->T的非线性映射。

net = newff(minmax(P),[16,1],{'tansig','purelin'},'trainlm');

net.trainParam.epochs = 2000;

net.trainParam.goal = 1e-5;

net = init(net);

net = train(net,P,T);

T' = sim(net,P)

上面描述的是一层隐含层一层输出层的BP神经网络,训练函数是L-M。

可以通过norm(T'-T),mse(T'-T)等评估拟合的效果。

需要说明的是:

trainlm算法速度比较快,容易过拟合,不利于推广,适合数据集很全时的映射使用;

traingdx适合推广,可以设置goal来提前停止

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值