傻瓜式模板:Dijkstra一般代码模板(个人总结)

傻瓜式模板:Dijkstra一般代码模板



一、Dijkstra小总结

Dijkstra适用于解决最短路问题(从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径),Dijkstra采用的是一种贪心的策略,常声明一个数组 dis[ ] 来保存指定点(常是起点)到各个需达顶点的最短距离和一个保存已经找到了最短路径的顶点的集合 mark[ ] (也有人用 vis[ ] ,我认为这是一个标记所以喜欢命名为 mark[ ] )。
下面我用两个例题来记录一下,本篇讲的模板是Dijkstra的一般模板。

二、典型例子

HDU1874 畅通工程续

#include<iostream>
using namespace std;
const int INF=1e7+10;
const int maxn=210;
int n,m,a,b,x,s,t;
//城镇数,道路数,道路连通及长度,起点和终点
int map[maxn][maxn],dis[maxn],mark[maxn];
//地图,距离,标记
void go(int s)
{
    int temp,k;
    for(int i=0;i<n;i++)
    {
        dis[i]=map[s][i];//起点通向某个城镇的距离
        mark[i]=0;//每个城镇默认没去过
    }
    dis[s]=0;
    mark[s]=1;
    for(int i=0;i<n;i++)
    {
        temp=INF;
        for(int j=0;j<n;j++)
        {
            if(!mark[j] && temp>dis[j])//该城镇没去过
            {
                k=j;//记录
                temp=dis[j];
            }
        }
        if(temp==INF)//判断路是否可通
            break;
        mark[k]=1;
        for(int j=0;j<n;j++)
            if(!mark[j] && dis[j]>dis[k]+map[k][j])
                dis[j]=min(dis[j],dis[k]+map[k][j]);
    }
}
int main()
{
    while(cin>>n>>m)
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                map[i][j]=INF;//将地图初始化为无穷大,默认无法到达
        for(int i=0;i<m;i++)
        {
            cin>>a>>b>>x;
            if(map[a][b]>x)
                map[a][b]=map[b][a]=x;//双向道路
        }
        cin>>s>>t;
        go(s);
        if(dis[t]==INF)//无法到达
            cout<<"-1"<<endl;
        else
            cout<<dis[t]<<endl;
    }
    return 0;
}

POJ2387 Til the Cows Come Home

#include<iostream>
const int INF=1e7+10;
const int maxn=1005;
int t,n,from,to,range;
int map[maxn][maxn],dis[maxn],mark[maxn];
using namespace std;
void go(int s)
{
    int temp,k;
    for(int i=1;i<=n;i++)
    {
        dis[i]=map[s][i];
        mark[i]=0;
    }
    dis[s]=0;
    mark[s]=1;
    for(int i=1;i<n;i++)
    {
        temp=INF;
        for(int j=1;j<n;j++)
        {
            if(!mark[j] && temp>dis[j])
            {
                k=j;
                temp=dis[j];
            }
        }
        if(temp==INF)
            break;
        mark[k]=1;
        for(int j=1;j<=n;j++)
            if(!mark[j] && dis[j]>dis[k]+map[k][j])
                dis[j]=min(dis[j],dis[k]+map[k][j]);//经典dijkstra
    }
}
int main()
{
    while(cin>>t>>n)
    {
        for(int i=1;i<=n;i++)
        {
            map[i][i]=0;
            for(int j=1;j<i;j++)
                map[i][j]=map[j][i]=INF;
        }
        for(int i=1;i<=t;i++)
        {
            cin>>from>>to>>range;
            if(map[from][to]>range)//可能有多条路,只记录最短的
                map[from][to]=map[to][from]=range;
        }
        go(1);
        cout<<dis[n]<<endl;
    }
    return 0;
}

三、代码模板

各位看官看到我上面两道题的代码之后一定发现了它们及其相似,下面贴一段我总结的代码模板:

(注意:在此之前先做好构图的工作,做题时根据题意理顺思路和逻辑之后才来写构造函数体,另外数组的命名一般都是固定的,这样写的时候方便自己构思)

void go/*也可以命名为dijkstra,根据个人喜好*/(int s/*指定点(一般是题目要求的起点)*/)
{
    int temp,k;
    for(int i=0;i<n;i++)//循环体的循环语句根据题目要求灵活变通设计
    {
        dis[i]=map[s][i];//记录距离
        mark[i]=0;//默认未访问
    }
    dis[s]=0;//指定点在原地,距离自然为0
    mark[s]=1;//当前标记在指定点
    for(int i=0;i<n;i++)
    {
        temp=INF;
        for(int j=0;j<n;j++)
        {
            if(!mark[j] && temp>dis[j])//如果未访问
            {
                k=j;//记录当前dis[]中最小的元素的下标
                temp=dis[j];//记录当前最小值
            }
        }
        if(temp==INF)//无法达到
            break;
        mark[k]=1;
        for(int j=0;j<n;j++)
            if(!mark[j] && dis[j]>dis[k]+map[k][j])//如果新得到的边可以影响其他未遍历的顶点,则更新当前最短路径的状态和长度
                dis[j]=dis[k]+map[k][j];
                //dis[j]=min(dis[j],dis[k]+map[k][j]); 这个也可以实现,一般来说都是用上面那个语句,我习惯用这个(臭毛病)
    }
}

以上代码只是Dijkstra的一般模板,具体实现需要根据题意灵活变通设计和改造,比如HDU 1595 find the longest of the shortest,本蒟蒻心血来潮写这个是因为做了上面那两道题之后发现写出来的代码极其相似 ,所以根据己见小小的总结了一下Dijkstra的傻瓜式一般代码模板,如果有写的不好的地方欢迎各位大佬批评指正!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值