凸性与凸优化问题全解析
1. 凸集
凸集是一个在数学优化中非常基础且重要的概念。一个集合 $\chi$,如果它包含连接其任意两点的线段,那么这个集合就被称为凸集。用数学语言来表达,对于任意的 $x_1, x_2 \in \chi$ 以及 $\theta \in [0, 1]$,都有 $\theta x_1 + (1 - \theta) x_2 \in \chi$。
下面通过一些图形和表格来直观地认识凸集和非凸集:
图中(a)部分,绿色的三角形和五边形及其边界是凸集;(b)部分,时钟形状、飘扬的旗帜形状以及边界有破损的矩形或正方形则是非凸集。
常见的凸集示例如下表所示:
| 凸集类型 | 描述 |
| — | — |
| 锥(非负齐次) | ${\theta_1x_1 + \theta_2x_2 \in \chi \mid x_1, x_2 \in \chi, \theta_1, \theta_2 \geq 0}$,$\chi$ 是凸集 |
| 多面体 | ${x \mid a_j^T x \leq b_j, j = 1, …, m, c_j^T x = d_j, j = 1, .., p}$ |
| 范数球 | ${x \mid |x - x_C| \leq r}$,$x \in R^n$,$r > 0$ 是半径,$x_c$ 是中心点 |
| 范数锥 | ${(x, t) \mid |x| \leq t} \subseteq R^{n + 1}$ |
| 超平面 | ${x \mid a^T x = b}$,$a \in