排序:
默认
按更新时间
按访问量

去年校招的经验分享

我去年经历了实习生招聘、内推以及校招,先后拿到了T、B、A、M等offer,简单总结了一些校招的准备和面试过程,希望对今年毕业的童鞋有所帮助~~PPT展示的不太全面,如果有哪方面的疑问请留言,我必知无不言~

2016-07-12 15:19:18

阅读数:1342

评论数:0

CNN与常用框架

七月在线 5月深度学习班课程笔记——No.4     这一节内容比较丰富。主要介绍神经网络的每一个层级结构,理清楚每一层可能影响结果的参数,再介绍CNN的常用框架。1. 神经网络1.1 神经网络——是什么?  神经网络没有一个严格的正式定义。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的...

2016-07-05 17:32:43

阅读数:10144

评论数:0

高效计算基础与线性分类器

七月算法5月深度学习班课程笔记——第二课 1. 深度学习与应用  1. 图像上的应用:可以根据图片,识别图片的内容,描述图像;模仿人的创造性生成画作;相册自动归类等。            2. NLP上的应用:用RNN学习某作家的文笔风格进行写作、学习代码写作等。下图为RNN学习了...

2016-06-29 16:01:47

阅读数:1015

评论数:0

Python及科学计算库的安装

1.安装  安装Python2.7: https://www.python.org/downloads/release/python-2712/ 根据电脑配置选择合适版本下载安装。  安装过python之后,Python27\Scripts有pip.exe,在Python27\Scripts文件夹...

2016-06-29 11:45:02

阅读数:5095

评论数:0

聚类算法与应用

七月算法4月机器学习算法班课程笔记——No.10 前言  与回归与分类不同,聚类是无监督学习算法,无监督指的是只需要数据,不需要标记结果,试图探索和发现一些模式。比如对用户购买模式的分析、图像颜色分割等。聚类算法的提出比较早,是数据挖掘的一个重要模块,可以对大量数据分类并概括出每一类的特点。目前也...

2016-06-23 19:37:24

阅读数:6463

评论数:3

推荐系统与应用

七月在线4月机器学习算法班课程笔记——No.9 前言  推荐系统——我早就很感兴趣的一个方向,可以说是机器学习在各个公司广泛应用的一个内容,从求职招聘就可以感觉到。另外,我们也经常在使用推荐系统,比如以推荐为特色的今日头条(你关心的,才是头条),还有淘宝的商品推荐等。曾经试图在网络上了解推荐系统,...

2016-06-20 16:42:47

阅读数:4926

评论数:0

信息论、最大熵模型

七月在线4月机器学习算法班课程笔记——No.8 1. 统计学习基础回顾1.1 先验概率与后验概率  先验概率:根据以往经验和分析得到的概率,如全概率公式,它往往作为”由因求果”问题中的”因”出现。   后验概率:依据得到”结果”信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是”执果寻因...

2016-06-16 15:03:42

阅读数:3008

评论数:2

工作流程与模型调优

七月在线4月机器学习算法班课程笔记——No.7 前言  我们知道,机器学习的过程是非常繁琐的。上一篇介绍了机器学习中特征处理重要而耗时,然而特征处理仅属于机器学习前序的工作内容。特征工程之后,需要选择机器学习模型、交叉验证、寻找最佳超参数等建模步骤。搭建模型之后呢,还需要进行模型的优化,模型调优是...

2016-06-15 14:47:19

阅读数:1719

评论数:0

特征工程

七月在线4月机器学习算法班课程笔记——No.6 前言  机器学习领域的大神Andrew Ng(吴恩达)老师曾说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied ma...

2016-06-12 16:16:23

阅读数:13154

评论数:4

线性回归与逻辑回归

回归算法是一种通过最小化预测值与实际结果值之间的差距,而得到输入特征之间的最佳组合方式的一类算法。对于连续值预测有线性回归等,而对于离散值/类别预测,我们也可以把逻辑回归等也视作回归算法的一种。   线性回归与逻辑回归是机器学习中比较基础又很常用的内容。线性回归主要用来解决连续值预测的问题,逻辑...

2016-06-06 17:04:28

阅读数:6565

评论数:0

凸优化初步

前言          这节课主要介绍凸优化的入门知识,程博士推荐阅读Boyd的《凸优化》,最经典的凸优化的书,这本书有600多页,细致讲解了凸优化相关的理论知识,可以作为一门学科来学习。因为硕士阶段学过《工程优化》,在这次学习过程中能容易的get到思想。 一般的优化问题包括 有约束和无约束两种,...

2016-06-03 17:59:52

阅读数:4167

评论数:0

矩阵分析与应用

第三讲依然是数学,因为数学是解决一切问题的基础。一个问深入到最后都是数理知识的支撑。所谓基础决定上层建筑,比如参加ACM比赛,高手之间的比赛已经不是编程技巧了,更多的是数学知识的比拼。若想走得远,数学基础一定要打好。嗯,好遗憾之前学数学多是为了考试,学完就忘,现在要好好再复习一下。 程博士用两个小...

2016-05-31 17:34:02

阅读数:4106

评论数:0

数理统计与参数估计

系统的学习概率论与数理统计是在大学二年级,当时还没有接触计算机应用的内容,仅把概率论作为一门纯数学课来学习,我们的老师当然也是数学系的。慢慢地发现概率论与数理统计是好多学科研究的基础,包括经济学、人工智能等等。鉴于它的重要性,有必要结合应用场景重新加深对概率论知识的理解。

2016-05-30 18:59:02

阅读数:2588

评论数:0

机器学习与微积分

机器学习是一门多领域交叉学科,包括概率论、统计学、凸分析、特征工程等等。最近跟着七月算法学习了机器学习的知识,干货不少,比看书理解的快一些,分别总结一下。

2016-05-25 17:33:18

阅读数:3071

评论数:0

二叉树中的那些常见的面试题

点击打开链接 关于二叉树 二叉树作为树的一种,是一种重要的数据结构,也是面试官经常考的东西。昨天看了一下关于树中的面试题,发现二叉树中的面试题比较常见的题型大概有下面几个:创建一颗二叉树(先序,中序,后序)、遍历一颗二叉树(先序,中序,后序和层次遍历)、求二叉树中叶子节点的个数...

2015-02-03 11:27:30

阅读数:820

评论数:0

整数划分问题

描述 Given two positive integers N and M, please divide N into several integers A1, A2, ..., Ak (k >= 1), so that: 1. 0 2. A1 + A2 + ... + Ak = N...

2015-01-05 11:52:52

阅读数:862

评论数:0

Protocol Buffer实例

hello.proto message helloworld• {• required int32 id = 1; // ID• 1 required string str = 2; // str• 7 ...

2014-08-13 18:10:27

阅读数:668

评论数:0

Linux 编译指令笔记

编译.h和.cpp: g++ *.cpp -lpthread -lgtest -o super

2014-08-13 17:29:24

阅读数:784

评论数:2

进程监控

#ifndef MS_MONITOR_H_ 1 #define MS_MONITOR_H_ 2 3 #include 4 #...

2014-08-06 18:17:46

阅读数:971

评论数:1

微软面试:k-th string

问题: Consider a string set that each of them consists of {0, 1} only. All strings in the set have the same number of 0s and 1s. Write a program to ...

2014-04-18 12:06:14

阅读数:1085

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭