Dilworth定理
Dilworth定理是组合数学的一个重要定理,它是定义在偏序集上的,在解决实际问题时非常有效。比如经典的题目“导弹拦截”。
内容:
偏序集上最小链划分中链的数量等于其反链长度的最大值。
- 什么是链?
我们假设在若干元素构成一个集合,那么,这个集合是链当且仅当这个集合的所有元素两两是可比的。换句话说,你可以看成是某个偏序关系中的元素。
- 什么叫最小链划分?
我们将S中的所有元素划分成若干条链,使每个元素都在且仅在唯一一条链中,叫链划分。最小就是指数量最小。
- 什么是反链?
正如名字一样,反链和链的定义恰好相反,对于一个集合,它是反链当且仅当这个集合里的元素两两都是不可比的。换句话说,这个集合里的任何两个元素无法联通。比如,偏序关系是大于,那么反链中的关系就是必然满足小于等于。
练手题目
Problem E. 导弹拦截
时间限制 1000 ms
内存限制 128 MB
题目描述
某国为了防御敌国的导弹袭击,研发出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试验阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入数据
输入数据只有一行,该行包含若干个数据,之间用半角逗号隔开,表示导弹依次飞来的高度(导弹最多有 $ 20 $ 枚,其高度为不大于 $3\times10^{3} $ 的正整数)。
输出数据
输出数据只有一行,该行包含两个数据,之间用半角逗号隔开。第一个数据表示这套系统最多能拦截的导弹数;第二个数据表示若要拦截所有导弹至少要再添加多少套这样的系统。
样例输入
389,207,155,300,299,170,158,65
样例输出
6,1
样例说明
注意申题,切勿直接提交过去的程序!
代码:
#include<iostream>
using namespace std;
int a[21];
int n, max1, max2;
int dp[21], dpp[21];
int main()
{
while (scanf("%d", &a[++n]) != EOF)
{
getchar();
};
n--;
/*for (int i = 0; i < n; i++) {
cin >> a[i];
}*/
for (int i = 1; i <= n; i++)dp[i] = dpp[i] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j < i; j++)
{
if (a[j] >= a[i]) dp[i] = max(dp[i], dp[j] + 1);
if (a[j] < a[i]) dpp[i] = max(dpp[i], dpp[j] + 1);
}
for (int i = 1; i <= n; i++)
{
max1 = max(max1, dp[i]);
max2 = max(max2, dpp[i]);
}
cout << max1 << "," << max2 - 1;
}
写在后面
经历了两次的WA,终于成功了!!