全排列生成算法(一)

对于给定的集合A{a1,a2,...,an},其中的n个元素互不相同,如何输出这n个元素的所有排列(全排列)。

递归算法

这里以A{a,b,c}为例,来说明全排列的生成方法,对于这个集合,其包含3个元素,所有的排列情况有3!=6种,对于每一种排列,其第一个元素有3种选择a,b,c,对于第一个元素为a的排列,其第二个元素有2种选择b,c;第一个元素为b的排列,第二个元素也有2种选择a,c,……,依次类推,我们可以将集合的全排列与一棵多叉树对应。如下图所示


在此树中,每一个从树根到叶子节点的路径,就对应了集合A的一个排列。通过递归算法,可以避免多叉树的构建过程,直接生成集合A的全排列,代码如下。

template <typename T>
inline void swap(T* array, unsigned int i, unsigned int j)
{
	T t = array[i];
	array[i] = array[j];
	array[j] = t;
}

/*
 * 递归输出序列的全排列
 */
void FullArray(char* array, size_t array_size, unsigned int index)
{
	if(index >= array_size)
	{
		for(unsigned int i = 0; i < array_size; ++i)
		{
			cout << array[i] << ' ';
		}

		cout << '\n';

		return;
	}

	for(unsigned int i = index; i < array_size; ++i)
	{
		swap(array, i, index);

		FullArray1(array, array_size, index + 1);

		swap(array, i, index);
	}
}
该算法使用原始的集合数组array作为参数代码的28~32行,将i位置的元素,与index位置的元素交换的目的是使得array[index + 1]到array[n]的所有元素,对应当前节点的后继结点,递归调用全排列生成函数。调用结束之后还需要回溯将交换位置的元素还原,以供其他下降路径使用。

字典序

全排列生成算法的一个重要思路,就是将集合A中的元素的排列,与某种顺序建立一一映射的关系,按照这种顺序,将集合的所有排列全部输出。这种顺序需要保证,既可以输出全部的排列,又不能重复输出某种排列,或者循环输出一部分排列。字典序就是用此种思想输出全排列的一种方式。这里以A{1,2,3,4}来说明用字典序输出全排列的方法。

首先,对于集合A的某种排列所形成的序列,字典序是比较序列大小的一种方式。以A{1,2,3,4}为例,其所形成的排列1234<1243,比较的方法是从前到后依次比较两个序列的对应元素,如果当前位置对应元素相同,则继续比较下一个位置,直到第一个元素不同的位置为止,元素值大的元素在字典序中就大于元素值小的元素。上面的a1[1...4]=1234和a2[1...4]=1243,对于i=1,i=2,两序列的对应元素相等,但是当i=2时,有a1[2]=3<a2[2]=4,所以1234<1243。

使用字典序输出全排列的思路是,首先输出字典序最小的排列,然后输出字典序次小的排列,……,最后输出字典序最大的排列。这里就涉及到一个问题,对于一个已知排列,如何求出其字典序中的下一个排列。这里给出算法。

  • 对于排列a[1...n],找到所有满足a[k]<a[k+1](0<k<n-1)的k的最大值,如果这样的k不存在,则说明当前排列已经是a的所有排列中字典序最大者,所有排列输出完毕。
  • 在a[k+1...n]中,寻找满足这样条件的元素l,使得在所有a[l]>a[k]的元素中,a[l]取得最小值。也就是说a[l]>a[k],但是小于所有其他大于a[k]的元素。
  • 交换a[l]与a[k].
  • 对于a[k+1...n],反转该区间内元素的顺序。也就是说a[k+1]与a[n]交换,a[k+2]与a[n-1]交换,……,这样就得到了a[1...n]在字典序中的下一个排列。

这里我们以排列a[1...8]=13876542为例,来解释一下上述算法。首先我们发现,1(38)76542,括号位置是第一处满足a[k]<a[k+1]的位置,此时k=2。所以我们在a[3...8]的区间内寻找比a[2]=3大的最小元素,找到a[7]=4满足条件,交换a[2]和a[7]得到新排列14876532,对于此排列的3~8区间,反转该区间的元素,将a[3]-a[8],a[4]-a[7]a[5]-a[6]分别交换,就得到了13876542字典序的下一个元素14235678。下面是该算法的实现代码

/*
 * 将数组中的元素翻转
 */
inline void Reverse(unsigned int* array, size_t array_size)
{
	for(unsigned i = 0; 2 * i < array_size - 1; ++i)
	{
		unsigned int t = array[i];
		array[i] = array[array_size - 1 - i];
		array[array_size - 1 - i] = t;
	}
}

inline int LexiNext(unsigned int* lexinum, size_t array_size)
{
	unsigned int i, j, k, t;

	i = array_size - 2;

	while(i != UINT_MAX && lexinum[i] > lexinum[i + 1])
	{
		--i;
	}

	//达到字典序最大值
	if(i == UINT_MAX)
	{
		return 1;
	}

	for(j = array_size - 1, k = UINT_MAX; j > i; --j)
	{
		if(lexinum[j] > lexinum[i])
		{
			if(k == UINT_MAX)
			{
				k = j;
			}
			else
			{
				if(lexinum[j] < lexinum[k])
				{
					k = j;
				}
			}
		}
	}

	t = lexinum[i];
	lexinum[i] = lexinum[k];
	lexinum[k] = t;

	Reverse(lexinum + i + 1, array_size - i - 1);
	return 0;
}

/*
 * 根据字典序输出排列
 */
inline void ArrayPrint(const char* array, size_t array_size, const unsigned int* lexinum)
{
	for(unsigned int i = 0; i < array_size; ++i)
	{
		cout << array[lexinum[i]] << ' ';
	}

	cout << '\n';
}

/*
 * 基于逆序数的全排列输出
 */
void FullArray(char* array, size_t array_size)
{
	unsigned int lexinumber[array_size];

	for(unsigned int i = 0; i < array_size; ++i)
	{
		lexinumber[i] = i;
	}

	ArrayPrint(array, array_size, lexinumber);

	while(!LexiNext(lexinumber, array_size))
	{
		ArrayPrint(array, array_size, lexinumber);
	}
}
使用字典序输出集合的全排列需要注意,因为字典序涉及两个排列之间的比较,对于元素集合不方便比较的情况,可以将它们在数组中的索引作为元素,按照字典序生成索引的全排列,然后按照索引输出对应集合元素的排列,示例代码使用的就是此方法。对于集合A{a,b,c,d},可以对其索引1234进行全排列生成。这么做还有一个好处,就是对于字典序全排列生成算法,需要从字典序最小的排列开始才能够生成集合的所有排列,如果原始集合A中的元素不是有序的情况,字典序法将无法得到所有的排列结果,需要对原集合排序之后再执行生成算法,生成索引的全排列,避免了对原始集合的排序操作。

字典序算法还有一个优点,就是不受重复元素的影响。例如1224,交换中间的两个2,实际上得到的还是同一个排列,而字典序则是严格按照排列元素的大小关系来生成的。对于包含重复元素的输入集合,需要先将相同的元素放在一起,以集合A{a,d,b,c,d,b}为例,如果直接对其索引123456进行全排列,将不会得到想要的结果,这里将重复的元素放到相邻的位置,不同元素之间不一定有序,得到排列A'{a,d,d,b,b,c},然后将不同的元素,对应不同的索引值,生成索引排列122334,再执行全排列算法,即可得到最终结果。

发布了19 篇原创文章 · 获赞 40 · 访问量 54万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览