多数派问题

假设数组v[1...n]中的每个元素v[i](1<=i<=n)对应于m个元素中的一个,这里m个元素用整数1~m表示,现在需要判断在数组v中是否有某个元素出现的次数,超过了半数。如果,v[1...n]对应于n张选票,1~m对应于m个候选人,这个问题实际上就是要判断是否有候选人的得票数严格过半(大于n/2)。

对于实际应用场景,我们可以用下面的方法解决该问题,用一个m元素的数组,分别记录各候选人的得票数,同时记录当前得票最多的候选人的得票总数,然后依次读入v[1...n]这n张选票,对每张选票对应的候选人的得票数加1。所有选票处理完毕后,判断得票数最多的候选人的得票数,是否大于n/2。该算法的时间复杂度为O(n),空间复杂度为O(m)。一般情况,候选人的数量m为常量,所以该算法可以高效的求解。但是如果m的情况不清楚,那么此方法就存在比较大的问题。初始阶段,由于无法确定m的规模,在程序运行过程中,可能会出现候选人的数量,大于预先分配数组的情况,此时就涉及到m数组的重新分配和内存的拷贝,比较极端的情况,如果m=n,那么就可能涉及候选人数组的多次重新分配,极大的影响算法的效率。

Robert S.Boyer和J Strother Moore两位牛人(就是BM算法的提出者),在《MJRTY-A Fast Majority Vote Algorithm》一文中,提出了一个巧妙算法,使得我们即使不知道m的具体情况,也可以在O(n)时间复杂度,O(1)空间复杂度内,判断是否有候选人的得票数过半。该算法在运行过程中,需要两个临时变量c和t,c记录当前可能得票数过半的候选人编号,t记录该候选人的净超出次数。对于c而言,除了可以等于1~m中的任何值之外,还有另一种状态,我们把其叫做未知状态,用于表示当前任何候选人的得票数都不可能过半(程序中可以用0,或者-1表示),t的最小值为0,程序开始运行时c为未知状态(c=0),t=0,然后按照如下方法处理投票数组v。

  • 对于v[i](1<=i<=n),如果c此时为未知状态,则c=v[i],t=1,递增i。
  • 如果c==v[i],++t,递增i。
  • 如果c!=v[i],--t,如果t==0,将c置为未知状态,递增i。
  • 所有投票处理完毕后,如果c为未知状态,则说明不存在任何候选人的得票数过半,否则重新遍历数组v,统计候选人c的实际得票总数,如果c的得票数确实过半,则c就是最终结果。

举例说明,假设v[1...8]={1,2,1,1,3,1,4,4},投票的数量为8,候选人的数量为4,此时用上述算法处理投票数据的过程如下表所示,这里未知状态用'?'表示

i12345678
v[i]12113144
c1?11111?
t10121210
程序运行的最终结果,c处于未知状态,说明对于投票数组v,不存在任何候选人的得票数过半。

如果v[1...9]={1,2,1,1,3,1,4,4,1},此时c的最后状态为1,重新遍历数组v,查看候选人1的得票数是否确实过半,统计结果1出现了5次,大于9/2,所以候选人1的票数过半。

如果v[1...9]={1,2,1,1,3,1,4,4,4},此时c的最后状态为4,统计数组v,发现4出现了3次,小于9/2,所以对于投票集合v,不存在候选人的票数过半。

该算法通过第一次遍历数组v,找到了可能候选人c,此时对于数组v,的票过半的候选人要么是c,要么就不存在任何人得票过半。这个结论并非那么显而易见,需要进行说明。首先,投票的顺序不影响计票的结果,所以无论v[1...9]={1,1,1,1,1,2,3,4,4},还是v[1...9]={1,2,1,3,1,4,1,4,1},最终得票过半数的都是候选人1,所以我们可以根据自己的需要,调整选票的先后顺序。假设第一遍遍历数组v后的结果c=c',此时我们可以这样构造投票数组中投票的顺序,一张c',一张其他候选人的投票,一张c',一张其他候选人的投票,……,如此构建得到v[1...n]={c',x,c',x,……},其中x代表除c'外其他任何候选人的投票,这样我们就可以将c'与x对应起来,因为c'的出现次数大于n/2,所以c'的总数必然大于其他所有候选者的票数之和,所以用此种方法排列投票,最后必然出现c',c',c',……连续出现的情况,按照本算法,之前的所有配对的c',x处理完毕的结果为c=?,因为后续出现的都是c',所以运行的最终结果必然是c=c',也就说明,如果v中某个候选人c'的得票数超过半数,运行结果必然有c=c'。

如果c最终为不确定状态,此时得票最多的候选人c'的票数最多也只能为n/2,此时不存在任何候选人得票数过半。

当然,也存在没有任何人得票数过半,且c不为未知状态的情况。所以,算法需要重新统计候选人c的真实得票数,以确定其是否真的得票数过半。

下面是算法代码,其中候选人的编号从0开始,未知状态用-1表示

int Majority(const int array[], size_t array_size)
{
	unsigned int i;

	int candidate = -1;
	unsigned int times = 0;

	for(i = 0; i < array_size; ++i)
	{
		if(candidate == -1)
		{
			candidate = array[i];
			times = 1;
			continue;
		}

		if(candidate == array[i])
		{
			++times;
			continue;
		}

		if(--times == 0)
		{
			candidate = -1;
		}
	}

	if(candidate == -1)
	{
		return -1;
	}

	for(i = 0, times = 0; i < array_size; ++i)
	{
		if(array[i] == candidate)
		{
			++times;
		}
	}

	if(times > array_size / 2)
	{
		return candidate;
	}

	return -1;
}
该算法在计算得票过半候选人的时候需要扫描投票数组两遍,所以对于候选人数量固定的情况,效率不如传统算法。但是对于候选人情况不确定的情况,该算法可以不受影响。特别是该算法在解决多数派问题时的思路,确实值得我们学习。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值