HDU 5528 Count a*b

0 链接

http://acm.hdu.edu.cn/showproblem.php?pid=5528

1 分析

1.1 和函数

g ( n ) = ∑ d ∣ n f ( d ) = ∑ e 1 = 0 k 1 ⋯ ∑ e r = 0 k r f ( p 1 e 1 p 2 e 2 ⋯ p r e r ) , 式 中 , n = p 1 k 1 p 2 k 2 ⋯ p r k r , p i ( 1 ≤ i ≤ r ) 为 素 因 子 g(n)=\sum_{d|n} {f(d)}=\sum_{e_1=0}^{k_1} \cdots \sum_{e_r=0}^{k_r}f(p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}) , 式中,n = p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r},p_i(1 \leq i \leq r)为素因子 g(n)=dnf(d)=e1=0k1er=0krf(p1e1p2e2prer)n=p1k1p2k2prkrpi1ir

1.2 积性和函数

若 f ( n ) 为 积 性 函 数 , 即 : f ( p 1 e 1 p 2 e 2 ⋯ p r e r ) = f ( p 1 e 1 ) f ( p 2 e 2 ) ⋯ f ( p r e r ) , 则 若f(n)为积性函数,即:f(p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}) = f(p_1^{e_1})f(p_2^{e_2})\cdots f(p_r^{e_r}),则 f(n)f(p1e1p2e2prer)=f(p1e1)f(p2e2)f(prer)
g ( n ) = ∑ d ∣ n f ( d ) = ∑ e 1 = 0 k 1 ⋯ ∑ e r = 0 k r f ( p 1 e 1 p 2 e 2 ⋯ p r e r ) = ∑ e 1 = 0 k 1 ⋯ ∑ e r = 0 k r f ( p 1 e 1 ) f ( p 2 e 2 ) ⋯ f ( p r e r ) g(n)=\sum_{d|n} {f(d)}=\sum_{e_1=0}^{k_1} \cdots \sum_{e_r=0}^{k_r}f(p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r})=\sum_{e_1=0}^{k_1} \cdots \sum_{e_r=0}^{k_r}f(p_1^{e_1})f(p_2^{e_2})\cdots f(p_r^{e_r}) g(n)=dnf(d)=e1=0k1er=0krf(p1e1p2e2prer)=e1=0k1er=0krf(p1e1)f(p2e2)f(prer)
= f ( p 1 0 ) ⋅ ( ∑ e 2 = 0 k 2 ⋯ ∑ e r = 0 k r f ( p 2 e 2 ) ⋯ f ( p r e r ) ) + ⋯ + f ( p 1 k 1 ) ⋅ ( ∑ e 2 = 0 k 2 ⋯ ∑ e r = 0 k r f ( p 2 e 2 ) ⋯ f ( p r e r ) ) =f(p_1^0)\cdot\left(\sum_{e_2=0}^{k_2} \cdots \sum_{e_r=0}^{k_r}f(p_2^{e_2})\cdots f(p_r^{e_r})\right)+ \cdots +f(p_1^{k_1})\cdot\left(\sum_{e_2=0}^{k_2} \cdots \sum_{e_r=0}^{k_r}f(p_2^{e_2})\cdots f(p_r^{e_r})\right) =f(p10)(e2=0k2er=0krf(p2e2)f(prer))++f(p1k1)(e2=0k2er=0krf(p2e2)f(prer))
= ( f ( p 1 0 ) + ⋯ + f ( p 1 k 1 ) ) ⋅ ( ∑ e 2 = 0 k 2 ⋯ ∑ e r = 0 k r f ( p 2 e 2 ) ⋯ f ( p r e r ) ) =\left(f(p_1^0)+ \cdots +f(p_1^{k_1})\right) \cdot \left(\sum_{e_2=0}^{k_2} \cdots \sum_{e_r=0}^{k_r}f(p_2^{e_2})\cdots f(p_r^{e_r})\right) =(f(p10)++f(p1k1))(e2=0k2er=0krf(p2e2)f(prer))
= ( f ( p 1 0 ) + ⋯ + f ( p 1 k 1 ) ) ⋅ ( f ( p 2 0 ) + ⋯ + f ( p 2 k 2 ) ) ⋅ ( ∑ e 3 = 0 k 3 ⋯ ∑ e r = 0 k r f ( p 3 e 3 ) ⋯ f ( p r e r ) ) =\left(f(p_1^0)+ \cdots +f(p_1^{k_1})\right) \cdot \left(f(p_2^0)+ \cdots +f(p_2^{k_2})\right) \cdot \left(\sum_{e_3=0}^{k_3} \cdots \sum_{e_r=0}^{k_r}f(p_3^{e_3})\cdots f(p_r^{e_r})\right) =(f(p10)++f(p1k1))(f(p20)++f(p2k2))(e3=0k3er=0krf(p3e3)f(prer))
= ( f ( p 1 0 ) + ⋯ + f ( p 1 k 1 ) ) ⋅ ( f ( p 2 0 ) + ⋯ + f ( p 2 k 2 ) ) ⋯ ( f ( p r 0 ) + ⋯ + f ( p r k r ) ) =\left(f(p_1^0)+ \cdots +f(p_1^{k_1}) \right) \cdot \left(f(p_2^0)+ \cdots +f(p_2^{k_2})\right) \cdots \left(f(p_r^0)+ \cdots +f(p_r^{k_r})\right) =(f(p10)++f(p1k1))(f(p20)++f(p2k2))(f(pr0)++f(prkr))
= ∏ i = 1 r ( f ( p i 0 ) + ⋯ + f ( p i k i ) ) = \prod_{i=1}^r \left(f(p_i^0)+ \cdots +f(p_i^{k_i})\right) =i=1r(f(pi0)++f(piki))

1.3 函数 F ( n ) = ∑ m ∣ n m 2 F(n)=\sum_{m|n}m^2 F(n)=mnm2

  • n = p 1 k 1 p 2 k 2 ⋯ p r k r , p i ( 1 ≤ i ≤ r ) 为 素 因 子 n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r},p_i(1 \leq i \leq r)为素因子 n=p1k1p2k2prkrpi1ir
  • f ( m ) = m 2 f(m)=m^2 f(m)=m2 f ( m ) f(m) f(m)是完全积性函数
  • F ( n ) = ∏ i = 1 r ( f ( p i 0 ) + ⋯ + f ( p i k i ) ) = ∏ i = 1 r ( ( p i 0 ) 2 + ⋯ + ( p i k i ) 2 ) F(n)= \prod_{i=1}^r \left(f(p_i^0)+ \cdots +f(p_i^{k_i})\right)= \prod_{i=1}^r \left((p_i^0)^2+ \cdots +(p_i^{k_i})^2\right) F(n)=i=1r(f(pi0)++f(piki))=i=1r((pi0)2++(piki)2)

1.4 函数 h ( m ) = ∑ d ∣ m d ⋅ ϕ ( m d ) h(m)=\sum_{d|m}{d\cdot \phi(\frac{m}{d})} h(m)=dmdϕ(dm)

  • ϕ ( m d ) \phi(\frac{m}{d}) ϕ(dm),欧拉函数,即:不大于 m d \frac{m}{d} dm且与 m d \frac{m}{d} dm互素的数的个数

1.5 函数 H ( n ) = ∑ m ∣ n h ( m ) = ∑ m ∣ n ( ∑ d ∣ m d ⋅ ϕ ( m d ) ) = n ⋅ τ ( n ) H(n) = \sum_{m|n}{h(m)}= \sum_{m|n}{\left(\sum_{d|m}{d\cdot \phi(\frac{m}{d})}\right)}=n\cdot \tau(n) H(n)=mnh(m)=mn(dmdϕ(dm))=nτ(n)

  • τ ( n ) \tau(n) τ(n),n的约数个数
  • ∑ m ∣ n ( ∑ d ∣ m d ⋅ ϕ ( m d ) ) = ∑ d ∣ n d ⋅ ( ∑ l ∣ n d ϕ ( l ) ) = ∑ d ∣ n d ⋅ n d = n ⋅ ∑ d ∣ n 1 = n ⋅ τ ( n ) \sum_{m|n}{\left(\sum_{d|m}{d\cdot \phi(\frac{m}{d})}\right)}=\sum_{d|n}d\cdot\left(\sum_{l|\frac{n}{d}}{\phi(l)}\right)=\sum_{d|n}d\cdot \frac{n}{d}=n \cdot \sum_{d|n}1 = n \cdot \tau(n) mn(dmdϕ(dm))=dnd(ldnϕ(l))=dnddn=ndn1=nτ(n)

1.6 数学模型 g ( n ) = F ( n ) − H ( n ) g(n)=F(n)-H(n) g(n)=F(n)H(n)

  • 设a、b为整数且 0 ≤ a , b < m 0\leq a,b < m 0a,b<m
  • f ( m ) f(m) f(m)为二元组 ( a , b ) (a,b) (ab)的个数,则 f ( m ) = m 2 f(m)=m^2 f(m)=m2,是完全积性函数
  • h ( m ) h(m) h(m)为满足 m ∣ a b m|ab mab 的二元组 ( a , b ) (a,b) (ab)的个数,则 h ( m ) = ∑ d ∣ m d ⋅ ϕ ( m d ) h(m)=\sum_{d|m}{d\cdot \phi(\frac{m}{d})} h(m)=dmdϕ(dm),是积性函数 (推导如下)
    • d = g c d ( m , a ) d=gcd(m,a) d=gcd(ma)
    • b必然是 m d \frac{m}{d} dm的整数倍,否则 m ∤ a b m \nmid ab mab。所以,b的可取值个数为: m m d = d \frac{m}{\frac{m}{d}}=d dmm=d
    • a必然是 g c d ( m , a ) gcd(m,a) gcd(ma)的整数倍,即: a = k ⋅ g c d ( m , a ) = k ⋅ d a=k\cdot gcd(m,a) = k \cdot d a=kgcd(ma)=kd,且 g c d ( k , m d ) = 1 、 k < m d gcd(k,\frac{m}{d})=1、k<\frac{m}{d} gcd(kdm)=1k<dm,所以k的取值个数是 ϕ ( m d ) \phi(\frac{m}{d}) ϕ(dm)
    • 所以,对于每一个d,二元组 ( a , b ) (a,b) (ab)的个数为: d ⋅ ϕ ( m d ) d\cdot \phi(\frac{m}{d}) dϕ(dm)
    • 所以, h ( m ) = ∑ d ∣ m d ⋅ ϕ ( m d ) h(m)=\sum_{d|m}{d\cdot \phi(\frac{m}{d})} h(m)=dmdϕ(dm)
  • 所以,a、b为整数且 0 ≤ a , b < m 、 m ∤ a b 0\leq a,b < m、m \nmid ab 0a,b<mmab 的二元组 ( a , b ) (a,b) (ab)的个数:
    g ( n ) = ∑ m ∣ n ( m 2 − h ( m ) ) = F ( n ) − H ( n ) g(n)=\sum_{m|n}(m^2-h(m)) =F(n)-H(n) g(n)=mn(m2h(m))=F(n)H(n)

2 代码

2.1 说明

  • 线性筛得到素数表
  • 计算 p i 、 k i p_i、k_i piki,即求解 n 的分解式: p 1 k 1 p 2 k 2 ⋯ p r k r p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r} p1k1p2k2prkr
  • 计算 ∏ i = 1 r ( ( p i 0 ) 2 + ⋯ + ( p i k i ) 2 ) \prod_{i=1}^r \left((p_i^0)^2+ \cdots +(p_i^{k_i})^2\right) i=1r((pi0)2++(piki)2)
  • 计算 n ⋅ τ ( n ) = n ⋅ ∏ i = 1 r ( 1 + k i ) n\cdot\tau(n) = n\cdot\prod_{i=1}^{r}(1+k_i) nτ(n)=ni=1r(1+ki)

2.2 参考代码【748MS】

// hdu 5528 Count a*b
#include<bits/stdc++.h>
using namespace std;
#define ll unsigned long long
#define MXN 32000
ll N, ans;
int pri[MXN], vis[MXN], tot = 0;
int p[MXN], pw[MXN], cnt;
int main(){
	int t;
	memset(pri, 0, sizeof pri);
	memset(vis, 0, sizeof vis);
	for(int i = 2; i <= MXN; ++i){
		if(vis[i] == 0){
			vis[i] = i;
			pri[++tot] = i;
		}
		for(int j = 1; j <= tot; ++j){
			if(i*pri[j] >= MXN || pri[j] > vis[i]) break;
			vis[i*pri[j]]= pri[j];
		}
	}
	scanf("%d", &t);
	while(t--){
		scanf("%lld", &N);
		ll tmp = N, sum;
		cnt = 0;
		memset(pw, 0, sizeof pw);
		for(int i = 1; i <= tot; ++i){
			if(tmp%pri[i] != 0) continue;
			p[++cnt] = pri[i], ++pw[cnt], tmp /= pri[i];
			while(tmp%pri[i] == 0) ++pw[cnt], tmp /= pri[i];
			if(tmp == 1 || pri[i]*pri[i] > tmp) break;
		}
		if(tmp > 1) p[++cnt] = tmp, ++pw[cnt];
		ans = 1;
		for(int i = 1; i <= cnt; ++i){
			tmp = 1, sum = 1;
			for(int j = 1; j <= pw[i]; ++j){
				tmp *= p[i];
				sum += tmp*tmp; 
			}
			ans *= sum;
		}
		tmp = 1;
		for(int i = 1; i <= cnt; ++i){
			tmp *= (1+pw[i]);
		}
		ans -= N*tmp;

		printf("%llu\n", ans);
	}	
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值