1 积性函数
定义
定理1
2 Möbius变换及逆变换
定义
数论函数
f
(
n
)
、
F
(
n
)
f(n)、F(n)
f(n)、F(n),若
F
(
n
)
=
∑
d
∣
n
f
(
d
)
=
∑
d
∣
n
f
(
n
d
)
F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d})
F(n)=d∣n∑f(d)=d∣n∑f(dn)
则称
F
(
n
)
F(n)
F(n)是
f
(
n
)
f(n)
f(n)的Möbius变换,称
f
(
n
)
f(n)
f(n)是
F
(
n
)
F(n)
F(n)的Möbius逆变换。
定理2
设 f ( n ) f(n) f(n)是给定的数论函数, F ( n ) F(n) F(n)是它的Möbius变换,且 n = p 1 α 1 ⋯ p r α r n=p_1^{\alpha_1} \cdots p_r^{\alpha_r} n=p1α1⋯prαr,那么
-
F
(
n
)
=
f
(
1
)
F(n)=f(1)
F(n)=f(1),当
n
>
1
n>1
n>1时,
F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f ( p 1 e 1 ⋯ p r e r ) F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1} \cdots p_r^{e_r}) F(n)=e1=0∑α1⋯er=0∑αrf(p1e1⋯prer) - 若
f
(
n
)
f(n)
f(n)是积性函数,则
F
(
n
)
F(n)
F(n)也是积性函数,且当
n
>
1
n>1
n>1时,
F ( n ) = ∏ i = 1 r ( 1 + f ( p i ) + ⋯ + f ( p i α i ) ) = ∏ p α ∣ n ( 1 + f ( p ) + ⋯ + f ( p α ) ) F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f(p_i^{\alpha_i}) \right) = \prod_{p^\alpha|n}\left(1+f(p)+\cdots +f(p^{\alpha}) \right) F(n)=i=1∏r(1+f(pi)+⋯+f(piαi))=pα∣n∏(1+f(p)+⋯+f(pα)) - 若
f
(
n
)
f(n)
f(n)是完全积性函数,则
F ( n ) = ∏ i = 1 r ( 1 + f ( p i ) + ⋯ + f α i ( p i ) ) = ∏ p α ∣ n ( 1 + f ( p ) + ⋯ + f α ( p ) ) F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f^{\alpha_i}(p_i) \right) = \prod_{p^\alpha|n}(1+f(p)+\cdots +f^{\alpha}(p)) F(n)=i=1∏r(1+f(pi)+⋯+fαi(pi))=pα∣n∏(1+f(p)+⋯+fα(p))
证明
- (略)
- 因为 f ( n ) f(n) f(n)是积性函数,因此 F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f ( p 1 e 1 ) ⋯ f ( p r e r ) = { ∑ e 1 = 0 α 1 f ( p 1 e 1 ) } ⋯ { ∑ e r = 0 α r f ( p r e r ) } = F ( p 1 α 1 ) ⋯ F ( p r α r ) F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1}) \cdots f(p_r^{e_r})=\left\{\sum_{e_1=0}^{\alpha_1}f(p_1^{e_1})\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f(p_r^{e_r})\right \}=F(p_1^{{\alpha}_1})\cdots F(p_r^{{\alpha}_r}) F(n)=e1=0∑α1⋯er=0∑αrf(p1e1)⋯f(prer)={e1=0∑α1f(p1e1)}⋯{er=0∑αrf(prer)}=F(p1α1)⋯F(prαr)
- 因为 f ( n ) f(n) f(n)是完全积性函数,因此 F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f e 1 ( p 1 ) ⋯ f e r ( p r ) = { ∑ e 1 = 0 α 1 f e 1 ( p 1 ) } ⋯ { ∑ e r = 0 α r f e r ( p r ) } F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f^{e_1}(p_1) \cdots f^{e_r}(p_r)=\left\{\sum_{e_1=0}^{\alpha_1}f^{e_1}(p_1)\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f^{e_r}(p_r)\right \} F(n)=e1=0∑α1⋯er=0∑αrfe1(p1)⋯fer(pr)={e1=0∑α1fe1(p1)}⋯{er=0∑αrfer(pr)}
常见的Möbius变换
f ( n ) 1 n φ ( n ) μ ( n ) μ ( n ) / n F ( n ) τ ( n ) σ ( n ) n I ( n ) φ ( n ) / n \begin{array}{c|ccccc} f(n) & \text{1} & \text{n} & \text{$\varphi(n)$} & \text{$\mu(n)$} & \text{$\mu(n)/n$} \\ \hline F(n) & \tau(n) &\sigma(n) & n & I(n) & \varphi(n)/n \\ \end{array} f(n)F(n)1τ(n)nσ(n)φ(n)nμ(n)I(n)μ(n)/nφ(n)/n
-
除数个数函数 τ ( n ) = ∑ d ∣ n 1 \tau(n)=\sum_{d|n}1 τ(n)=∑d∣n1
-
除数和函数 σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum_{d|n}d σ(n)=∑d∣nd
-
莫比乌斯函数 μ ( n ) \mu(n) μ(n)
- μ ( n ) = { 1 d = 1 ( − 1 ) r d = p 1 ⋯ p r 0 其 他 \mu(n)= \begin{cases} 1 & d=1 \\ (-1)^r & d=p_1 \cdots p_r \\ 0 & 其他 \end{cases} μ(n)=⎩⎪⎨⎪⎧1(−1)r0d=1d=p1⋯pr其他
- 若 ( d 1 , d 2 ) = 1 , 则 μ ( d 1 ⋅ d 2 ) = μ ( d 1 ) ⋅ μ ( d 2 ) 若(d_1,d_2)=1,则 \mu(d_1\cdot d_2)=\mu(d_1)\cdot \mu(d_2) 若(d1,d2)=1,则μ(d1⋅d2)=μ(d1)⋅μ(d2)
-
单位函数 I ( n ) = ∑ d ∣ n μ ( d ) I(n)=\sum_{d|n}\mu(d) I(n)=∑d∣nμ(d)
I ( n ) = ∑ d ∣ n μ ( d ) = [ n = 1 ] = { 1 n = 1 0 n > 1 I(n)=\sum_{d|n}\mu(d)=[n=1]= \begin{cases} 1 & \text{$n=1$} \\ 0 & \text{$n>1$} \\ \end{cases}\quad I(n)=d∣n∑μ(d)=[n=1]={10n=1n>1
例题
- 例1:求
μ
2
(
n
)
/
φ
(
n
)
\mu^2(n)/\varphi(n)
μ2(n)/φ(n)的Möbius变换
F
(
n
)
F(n)
F(n)
解:
∵ ∑ d ∣ p α μ 2 ( d ) / φ ( d ) = 1 + 1 p ⋅ ( 1 − 1 p ) = p p − 1 = 1 1 − 1 p \because \quad \sum_{d|{p^{\alpha}}}\mu^2(d)/\varphi(d)=1+\frac{1}{p\cdot (1-\frac{1}{p})}=\frac{p}{p-1}=\frac{1}{1-\frac{1}{p}} ∵d∣pα∑μ2(d)/φ(d)=1+p⋅(1−p1)1=p−1p=1−p11
又 ∵ μ 2 ( n ) 、 φ ( n ) 、 μ 2 ( n ) / φ ( n ) 是 积 性 函 数 又 \because \quad \mu^2(n)、\varphi(n)、\mu^2(n)/\varphi(n) 是积性函数 又∵μ2(n)、φ(n)、μ2(n)/φ(n)是积性函数
∴ F ( n ) = ∑ d ∣ p 1 α 1 ⋯ p r α r μ 2 ( d ) / φ ( d ) = 1 1 − 1 p 1 ⋯ 1 1 − 1 p r = n φ ( n ) \therefore \quad F(n)= \sum_{d|{p_1^{{\alpha}_1}}\cdots{p_r^{{\alpha}_r}}}\mu^2(d)/\varphi(d)=\frac{1}{1-\frac{1}{p_1}}\cdots \frac{1}{1-\frac{1}{p_r}}=\frac{n}{\varphi(n)} ∴F(n)=d∣p1α1⋯prαr∑μ2(d)/φ(d)=1−p111⋯1−pr11=φ(n)n - 例2:设
n
=
p
1
α
1
⋯
p
r
α
r
,
n=p_1^{\alpha_1} \cdots p_r^{\alpha_r},
n=p1α1⋯prαr,求
Ω
(
n
)
\Omega(n)
Ω(n)的Möbius变换
F
(
n
)
F(n)
F(n).
- 不同的素因数个数函数,非积性函数
ω ( n ) = { r n > 1 0 n = 1 \omega(n) = \begin{cases} r & \text{$n>1$}\\ 0 & \text{$n=1$}\\ \end{cases} \quad\quad\quad ω(n)={r0n>1n=1 - 素因数个数函数,非积性函数
Ω ( n ) = { α 1 + ⋯ + α r n > 1 0 n = 1 \Omega(n) = \begin{cases} \alpha_1+\cdots + \alpha_r & \text{$n>1$} \\ 0 & \text{$n=1$} \\ \end{cases}\quad Ω(n)={α1+⋯+αr0n>1n=1 - 除数个数函数,积性函数
τ ( n ) = τ ( p 1 α 1 ⋯ p r α r ) = ( 1 + α 1 ) ( 1 + α 2 ) ⋯ ( 1 + α r ) \tau(n)=\tau(p_1^{\alpha_1} \cdots p_r^{\alpha_r})=(1+\alpha_1)(1+\alpha_2)\cdots(1+\alpha_r) τ(n)=τ(p1α1⋯prαr)=(1+α1)(1+α2)⋯(1+αr)
解1:
F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r Ω ( p 1 e 1 ⋯ p r e r ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r ( e 1 + e 2 + ⋯ + e r ) F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r}) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}(e_1+e_2+\cdots + e_r) F(n)=e1=0∑α1⋯er=0∑αrΩ(p1e1⋯prer)=e1=0∑α1⋯er=0∑αr(e1+e2+⋯+er)
= ∏ i = 1 r 1 2 α i ( α 1 + 1 ) ⋯ ( α r + 1 ) = 1 2 Ω ( n ) τ ( n ) =\prod_{i=1}^{r}\frac{1}{2}\alpha_i(\alpha_1+1)\cdots (\alpha_r+1)= \frac{1}{2}\Omega(n)\tau(n) =i=1∏r21αi(α1+1)⋯(αr+1)=21Ω(n)τ(n)
解2:
F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r Ω ( p 1 e 1 ⋯ p r e r ) F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r}) F(n)=e1=0∑α1⋯er=0∑αrΩ(p1e1⋯prer)
= ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( 1 ⋅ p 2 e 2 ⋯ p r e r ) + ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 1 ⋅ p 2 e 2 ⋯ p r e r ) + ⋯ + ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 1 α 1 ⋅ p 2 e 2 ⋯ p r e r ) =\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \cdots +\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{\alpha_1}\cdot p_2^{e_2} \cdots p_r^{e_r}) =e2=0∑α2⋯er=0∑αrΩ(1⋅p2e2⋯prer)+e2=0∑α2⋯er=0∑αrΩ(p1⋅p2e2⋯prer)+⋯+e2=0∑α2⋯er=0∑αrΩ(p1α1⋅p2e2⋯prer)
= ( 0 + 1 + ⋯ + α 1 ) ⋅ τ ( p 2 e 2 ⋯ p r e r ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) =(0+1+\cdots + \alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =(0+1+⋯+α1)⋅τ(p2e2⋯prer)+(1+α1)⋅e2=0∑α2⋯er=0∑αrΩ(p2e2⋯prer)
= α 1 2 ⋅ ( 1 + α 1 ) ⋅ τ ( p 2 e 2 ⋯ p r e r ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) =\frac{\alpha_1}{2} \cdot (1+\alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =2α1⋅(1+α1)⋅τ(p2e2⋯prer)+(1+α1)⋅e2=0∑α2⋯er=0∑αrΩ(p2e2⋯prer)
= α 1 2 ⋅ τ ( n ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) = 1 2 Ω ( n ) τ ( n ) =\frac{\alpha_1}{2} \cdot \tau(n) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =\frac{1}{2}\Omega(n)\tau(n) =2α1⋅τ(n)+(1+α1)⋅e2=0∑α2⋯er=0∑αrΩ(p2e2⋯prer)=21Ω(n)τ(n)
- 不同的素因数个数函数,非积性函数
- 例3:求
φ
(
n
)
\varphi(n)
φ(n)的Möbius变换
F
(
n
)
F(n)
F(n)
解:
F ( n ) = ∑ d ∣ n φ ( d ) = ∏ i = 1 r ( 1 + φ ( p i ) + ⋯ + φ ( p i α i ) ) = ∏ i = 1 r ( 1 + p i − 1 + p i 2 − p i + ⋯ + p i α i − p i α i − 1 ) = ∏ i = 1 r p i α i = n F(n)=\sum_{d|n}\varphi(d)=\prod_{i=1}^r(1+\varphi(p_i)+\cdots +\varphi(p_i^{\alpha_i}))\\ =\prod_{i=1}^r(1+p_i-1+p_i^2-p_i+\cdots + p_i^{\alpha_i}-p_i^{\alpha_i-1})\\ =\prod_{i=1}^rp_i^{\alpha_i}=n F(n)=d∣n∑φ(d)=i=1∏r(1+φ(pi)+⋯+φ(piαi))=i=1∏r(1+pi−1+pi2−pi+⋯+piαi−piαi−1)=i=1∏rpiαi=n
推论1
设
f
(
n
)
f(n)
f(n)是积性函数,则
∑
d
∣
n
μ
(
d
)
f
(
d
)
=
∏
p
∣
n
(
1
−
f
(
p
)
)
\sum_{d|n}\mu(d)f(d)=\prod_{p|n}(1-f(p))
d∣n∑μ(d)f(d)=p∣n∏(1−f(p))
∑
d
∣
n
μ
2
(
d
)
f
(
d
)
=
∏
p
∣
n
(
1
+
f
(
p
)
)
\sum_{d|n}\mu^2(d)f(d)=\prod_{p|n}(1+f(p))
d∣n∑μ2(d)f(d)=p∣n∏(1+f(p))
证明
根据定理1(2)可得,
F
(
n
)
=
∑
d
∣
n
μ
(
d
)
f
(
d
)
=
∏
i
=
1
r
(
μ
(
1
)
+
μ
(
p
i
)
⋅
f
(
p
i
)
+
⋯
+
μ
(
p
i
α
i
)
⋅
f
(
p
i
α
i
)
)
F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu(1)+\mu(p_i)\cdot f(p_i)+\cdots +\mu(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i}))
F(n)=d∣n∑μ(d)f(d)=i=1∏r(μ(1)+μ(pi)⋅f(pi)+⋯+μ(piαi)⋅f(piαi))
=
∏
i
=
1
r
(
1
−
f
(
p
i
)
)
= \prod_{i=1}^{r}(1-f(p_i))
=i=1∏r(1−f(pi))
同理可得:
F
(
n
)
=
∑
d
∣
n
μ
(
d
)
f
(
d
)
=
∏
i
=
1
r
(
μ
2
(
1
)
+
μ
2
(
p
i
)
⋅
f
(
p
i
)
+
⋯
+
μ
2
(
p
i
α
i
)
⋅
f
(
p
i
α
i
)
)
F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu^2(1)+\mu^2(p_i)\cdot f(p_i)+\cdots +\mu^2(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i}))
F(n)=d∣n∑μ(d)f(d)=i=1∏r(μ2(1)+μ2(pi)⋅f(pi)+⋯+μ2(piαi)⋅f(piαi))
=
∏
i
=
1
r
(
1
+
f
(
p
i
)
)
= \prod_{i=1}^{r}(1+f(p_i))
=i=1∏r(1+f(pi))
例题
- f ( n ) = 1 f(n)=1 f(n)=1,则 ∑ d ∣ n μ ( d ) ⋅ 1 = I ( n ) \sum_{d|n}\mu(d)\cdot 1=I(n) ∑d∣nμ(d)⋅1=I(n)
- f ( n ) = 1 / n f(n)=1/n f(n)=1/n,则 ∑ d ∣ n μ ( d ) / d = φ ( n ) / n \sum_{d|n}\mu(d)/d=\varphi(n)/n ∑d∣nμ(d)/d=φ(n)/n
定理3
设
f
(
n
)
、
F
(
n
)
f(n)、F(n)
f(n)、F(n)是数论函数,那么
F
(
n
)
=
∑
d
∣
n
f
(
d
)
=
∑
d
∣
n
f
(
n
d
)
⇔
f
(
n
)
=
∑
d
∣
n
μ
(
d
)
F
(
n
d
)
=
∑
d
∣
n
μ
(
n
d
)
F
(
d
)
F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d}) \quad \Leftrightarrow \quad f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})F(d)
F(n)=d∣n∑f(d)=d∣n∑f(dn)⇔f(n)=d∣n∑μ(d)F(dn)=d∣n∑μ(dn)F(d)
证明
关键:“关联约束”
→
转化
\overset{\text{转化}}{\rightarrow}
→转化 “独立约束”
∑
d
∣
n
g
(
n
d
)
∑
k
∣
d
f
(
k
)
=
k
⋅
l
=
d
∑
k
⋅
l
∣
n
g
(
n
k
⋅
l
)
f
(
k
)
=
∑
k
∣
n
f
(
k
)
∑
l
∣
n
k
g
(
l
)
\sum_{d|n}g(\frac{n}{d})\sum_{k|d}f(k) \overset{k\cdot l=d}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l)
d∣n∑g(dn)k∣d∑f(k)=k⋅l=dk⋅l∣n∑g(k⋅ln)f(k)=k∣n∑f(k)l∣kn∑g(l)
∑
d
∣
n
∑
k
∣
d
g
(
d
k
)
f
(
k
)
=
d
⋅
l
=
n
∑
k
⋅
l
∣
n
g
(
n
k
⋅
l
)
f
(
k
)
=
∑
k
∣
n
f
(
k
)
∑
l
∣
n
k
g
(
l
)
\sum_{d|n}\sum_{k|d}g(\frac{d}{k})f(k) \overset{d\cdot l=n}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l)
d∣n∑k∣d∑g(kd)f(k)=d⋅l=nk⋅l∣n∑g(k⋅ln)f(k)=k∣n∑f(k)l∣kn∑g(l)
- 充分性
∑ d ∣ n f ( d ) = ∑ d ∣ n { ∑ k ∣ d μ ( d k ) F ( k ) } = ∑ k ∣ n F ( k ) ∑ l ∣ n k μ ( l ) = F ( n ) \sum_{d|n}f(d)=\sum_{d|n}\left\{\sum_{k|d}\mu(\frac{d}{k})F(k)\right\}=\sum_{k|n}F(k)\sum_{l|\frac{n}{k}}\mu(l)=F(n) d∣n∑f(d)=d∣n∑⎩⎨⎧k∣d∑μ(kd)F(k)⎭⎬⎫=k∣n∑F(k)l∣kn∑μ(l)=F(n) - 必要性
∑ d ∣ n μ ( n d ) F ( d ) = ∑ d ∣ n μ ( n d ) ∑ k ∣ d f ( k ) = ∑ k ∣ n f ( k ) ∑ l ∣ n k μ ( l ) = f ( n ) \sum_{d|n}\mu(\frac{n}{d})F(d)=\sum_{d|n}\mu(\frac{n}{d})\sum_{k|d}f(k) =\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}\mu(l)=f(n) d∣n∑μ(dn)F(d)=d∣n∑μ(dn)k∣d∑f(k)=k∣n∑f(k)l∣kn∑μ(l)=f(n)
例题
1
=
∑
d
∣
n
μ
(
d
)
τ
(
n
d
)
=
∑
d
∣
n
μ
(
n
d
)
τ
(
d
)
1=\sum_{d|n}\mu(d)\tau(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\tau(d)
1=d∣n∑μ(d)τ(dn)=d∣n∑μ(dn)τ(d)
n
=
∑
d
∣
n
μ
(
d
)
σ
(
n
d
)
=
∑
d
∣
n
μ
(
n
d
)
σ
(
d
)
n=\sum_{d|n}\mu(d)\sigma(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\sigma(d)
n=d∣n∑μ(d)σ(dn)=d∣n∑μ(dn)σ(d)
φ
(
n
)
=
∑
d
∣
n
μ
(
d
)
(
n
d
)
=
∑
d
∣
n
μ
(
n
d
)
d
\varphi(n)=\sum_{d|n}\mu(d)(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})d
φ(n)=d∣n∑μ(d)(dn)=d∣n∑μ(dn)d
μ
(
n
)
n
=
∑
d
∣
n
μ
(
d
)
φ
(
n
d
)
/
n
d
=
∑
d
∣
n
μ
(
n
/
d
[
]
)
φ
(
d
)
d
\frac{\mu(n)}{n}=\sum_{d|n}\mu(d)\varphi(\frac{n}{d})/\frac{n}{d}=\sum_{d|n}\frac{\mu(n/d[])\varphi(d)}{d}
nμ(n)=d∣n∑μ(d)φ(dn)/dn=d∣n∑dμ(n/d[])φ(d)
定理4
设 f ( n ) 、 g ( n ) f(n)、g(n) f(n)、g(n) 是数论函数, h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)=\sum_{d|n}f(d)g(\frac{n}{d}) h(n)=∑d∣nf(d)g(dn),那么,当 f ( n ) 、 g ( n ) f(n)、g(n) f(n)、g(n)都是积性函数时, h ( n ) h(n) h(n)也是积性函数.
证明
- f ( 1 ) = g ( 1 ) = 1 → h ( 1 ) = 1 f(1)=g(1)=1 \rightarrow h(1)=1 f(1)=g(1)=1→h(1)=1
- 若
(
m
,
n
)
=
1
(m,n)=1
(m,n)=1
h ( m n ) = ∑ d ∣ m n f ( m n ) g ( m n d ) = ∑ d 1 d 2 ∣ m n f ( m n ) g ( m n d 1 d 2 ) = ∑ d 1 ∣ m f ( m ) g ( m d 1 ) ⋅ ∑ d 2 ∣ n f ( n ) g ( n d 2 ) = h ( m ) h ( n ) h(mn)=\sum_{d|mn}f(mn)g(\frac{mn}{d})=\sum_{d_1d_2|mn}f(mn)g(\frac{mn}{d_1d_2})=\sum_{d_1|m}f(m)g(\frac{m}{d_1})\cdot \sum_{d_2|n}f(n)g(\frac{n}{d_2})=h(m)h(n) h(mn)=d∣mn∑f(mn)g(dmn)=d1d2∣mn∑f(mn)g(d1d2mn)=d1∣m∑f(m)g(d1m)⋅d2∣n∑f(n)g(d2n)=h(m)h(n)
说明:
- m、n互质,它们的素因子互不相同;
- d的素因子要么来自m,要么来自n,所以d可以分解成 d 1 、 d 2 d_1、d_2 d1、d2,它们的素因子分别来自m和n;
- 关联约束 → 转化 \overset{\text{转化}}{\rightarrow} →转化 独立约束。
推论2
f ( n ) f(n) f(n) 是积性函数的充分必要条件是它的Möbius变换 F ( n ) F(n) F(n) 是积性函数.
证明
∵
μ
(
n
)
、
F
(
n
)
\because \mu(n)、F(n)
∵μ(n)、F(n)是积性函数
∴
\therefore
∴ 根据定理4可得,
f
(
n
)
=
∑
d
∣
n
μ
(
n
d
)
F
(
d
)
是
积
性
函
数
f(n)=\sum_{d|n}\mu(\frac{n}{d})F(d) 是积性函数
f(n)=∑d∣nμ(dn)F(d)是积性函数.
例题
提示:求解积性函数F(n)的Möbius逆变换f(n)时,根据 f ( p α ) = F ( p α ) − F ( p α − 1 ) f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1}) f(pα)=F(pα)−F(pα−1)计算.
- 例1:求
F
(
n
)
=
n
t
F(n)=n^t
F(n)=nt 的Möbius逆变换.
解:
∵ F ( n ) = n t 是 积 性 函 数 \because F(n)=n^t 是积性函数 ∵F(n)=nt是积性函数
∴ f ( p α ) = F ( p α ) − F ( p α − 1 ) = ( p α ) t − ( p α − 1 ) t = p α t ( 1 − p − t ) \therefore f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1})=(p^\alpha)^t-(p^{\alpha-1})^t =p^{\alpha t}(1-p^{-t}) ∴f(pα)=F(pα)−F(pα−1)=(pα)t−(pα−1)t=pαt(1−p−t)
∴ f ( n ) = n t ⋅ ∏ p ∣ n ( 1 − p − t ) \therefore f(n)=n^t\cdot \prod_{p|n}(1-p^{-t}) ∴f(n)=nt⋅p∣n∏(1−p−t) - 例2:求
F
(
n
)
=
φ
(
n
)
F(n)=\varphi(n)
F(n)=φ(n) 的Möbius逆变换.
解:
∵ F ( n ) = φ ( n ) 是 积 性 函 数 \because F(n)=\varphi(n) 是积性函数 ∵F(n)=φ(n)是积性函数
∴ f ( p α ) = φ ( p α ) − φ ( p α − 1 ) = { p ( 1 − 2 p ) α = 1 p α ( 1 − 1 p ) 2 α ≥ 2 \therefore f(p^\alpha)=\varphi(p^\alpha)-\varphi(p^{\alpha-1})= \begin{cases} p(1-\frac{2}{p}) & \alpha=1\\ p^\alpha(1-\frac{1}{p})^2 & \alpha \geq2 \end{cases} ∴f(pα)=φ(pα)−φ(pα−1)={p(1−p2)pα(1−p1)2α=1α≥2
∴ f ( n ) = n ⋅ ∏ p ∣ ∣ n ( 1 − 2 p ) ∏ p 2 ∣ n ( 1 − 1 p ) 2 \therefore f(n)=n\cdot \prod_{p||n}(1-\frac{2}{p})\prod_{p^2|n}(1-\frac{1}{p})^2 ∴f(n)=n⋅p∣∣n∏(1−p2)p2∣n∏(1−p1)2
说明:符号 a k ∣ ∣ b a^k||b ak∣∣b 表示 b 恰好被 a k a^k ak 整除.
3 Dirichlet卷积
定义
设 h ( n ) = ∑ d ∣ n f ( n ) g ( n d ) h(n)=\sum_{d|n}f(n)g(\frac{n}{d}) h(n)=∑d∣nf(n)g(dn) 是定义在数论函数集合上的一种运算,则称 h ( n ) h(n) h(n) 是 f ( n ) 、 g ( n ) f(n)、g(n) f(n)、g(n) 的Dirichlet卷积,记作 h = f ∗ g h=f * g h=f∗g,且有 h ( n ) = ( f ∗ g ) ( n ) h(n)=(f*g)(n) h(n)=(f∗g)(n), f ∗ g f * g f∗g 可以看作一个算子.
性质
- h ( n ) = ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) = ∑ d ∣ n f ( n d ) g ( d ) = ∑ d ⋅ l = n f ( d ) g ( l ) h(n)=(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})=\sum_{d|n}f(\frac{n}{d})g(d)=\sum_{d\cdot l=n}f(d)g(l) h(n)=(f∗g)(n)=∑d∣nf(d)g(dn)=∑d∣nf(dn)g(d)=∑d⋅l=nf(d)g(l)
- g ∗ f = f ∗ g g * f =f * g g∗f=f∗g
- g ∗ ( f ∗ k ) = ( g ∗ f ) ∗ k g * (f * k) =(g * f)* k g∗(f∗k)=(g∗f)∗k