莫比乌斯变换及逆变换

1 积性函数

定义

定理1

2 Möbius变换及逆变换

定义

数论函数 f ( n ) 、 F ( n ) f(n)、F(n) f(n)F(n),若
F ( n ) = ∑ d ∣ n f ( d ) = ∑ d ∣ n f ( n d ) F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d}) F(n)=dnf(d)=dnf(dn)
则称 F ( n ) F(n) F(n) f ( n ) f(n) f(n)的Möbius变换,称 f ( n ) f(n) f(n) F ( n ) F(n) F(n)的Möbius逆变换。

定理2

f ( n ) f(n) f(n)是给定的数论函数, F ( n ) F(n) F(n)是它的Möbius变换,且 n = p 1 α 1 ⋯ p r α r n=p_1^{\alpha_1} \cdots p_r^{\alpha_r} n=p1α1prαr,那么

  1. F ( n ) = f ( 1 ) F(n)=f(1) F(n)=f(1),当 n > 1 n>1 n>1时,
    F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f ( p 1 e 1 ⋯ p r e r ) F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1} \cdots p_r^{e_r}) F(n)=e1=0α1er=0αrf(p1e1prer)
  2. f ( n ) f(n) f(n)是积性函数,则 F ( n ) F(n) F(n)也是积性函数,且当 n > 1 n>1 n>1时,
    F ( n ) = ∏ i = 1 r ( 1 + f ( p i ) + ⋯ + f ( p i α i ) ) = ∏ p α ∣ n ( 1 + f ( p ) + ⋯ + f ( p α ) ) F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f(p_i^{\alpha_i}) \right) = \prod_{p^\alpha|n}\left(1+f(p)+\cdots +f(p^{\alpha}) \right) F(n)=i=1r(1+f(pi)++f(piαi))=pαn(1+f(p)++f(pα))
  3. f ( n ) f(n) f(n)是完全积性函数,则
    F ( n ) = ∏ i = 1 r ( 1 + f ( p i ) + ⋯ + f α i ( p i ) ) = ∏ p α ∣ n ( 1 + f ( p ) + ⋯ + f α ( p ) ) F(n)= \prod_{i=1}^{r}\left(1+f(p_i)+\cdots +f^{\alpha_i}(p_i) \right) = \prod_{p^\alpha|n}(1+f(p)+\cdots +f^{\alpha}(p)) F(n)=i=1r(1+f(pi)++fαi(pi))=pαn(1+f(p)++fα(p))

证明

  1. (略)
  2. 因为 f ( n ) f(n) f(n)是积性函数,因此 F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f ( p 1 e 1 ) ⋯ f ( p r e r ) = { ∑ e 1 = 0 α 1 f ( p 1 e 1 ) } ⋯ { ∑ e r = 0 α r f ( p r e r ) } = F ( p 1 α 1 ) ⋯ F ( p r α r ) F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f(p_1^{e_1}) \cdots f(p_r^{e_r})=\left\{\sum_{e_1=0}^{\alpha_1}f(p_1^{e_1})\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f(p_r^{e_r})\right \}=F(p_1^{{\alpha}_1})\cdots F(p_r^{{\alpha}_r}) F(n)=e1=0α1er=0αrf(p1e1)f(prer)={e1=0α1f(p1e1)}{er=0αrf(prer)}=F(p1α1)F(prαr)
  3. 因为 f ( n ) f(n) f(n)是完全积性函数,因此 F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r f e 1 ( p 1 ) ⋯ f e r ( p r ) = { ∑ e 1 = 0 α 1 f e 1 ( p 1 ) } ⋯ { ∑ e r = 0 α r f e r ( p r ) } F(n)=\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}f^{e_1}(p_1) \cdots f^{e_r}(p_r)=\left\{\sum_{e_1=0}^{\alpha_1}f^{e_1}(p_1)\right\} \cdots\left\{\sum_{e_r=0}^{\alpha_r}f^{e_r}(p_r)\right \} F(n)=e1=0α1er=0αrfe1(p1)fer(pr)={e1=0α1fe1(p1)}{er=0αrfer(pr)}

常见的Möbius变换

f ( n ) 1 n φ ( n ) μ ( n ) μ ( n ) / n F ( n ) τ ( n ) σ ( n ) n I ( n ) φ ( n ) / n \begin{array}{c|ccccc} f(n) & \text{1} & \text{n} & \text{$\varphi(n)$} & \text{$\mu(n)$} & \text{$\mu(n)/n$} \\ \hline F(n) & \tau(n) &\sigma(n) & n & I(n) & \varphi(n)/n \\ \end{array} f(n)F(n)1τ(n)nσ(n)φ(n)nμ(n)I(n)μ(n)/nφ(n)/n

  • 除数个数函数 τ ( n ) = ∑ d ∣ n 1 \tau(n)=\sum_{d|n}1 τ(n)=dn1

  • 除数和函数 σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum_{d|n}d σ(n)=dnd

  • 莫比乌斯函数 μ ( n ) \mu(n) μ(n)

    • μ ( n ) = { 1 d = 1 ( − 1 ) r d = p 1 ⋯ p r 0 其 他 \mu(n)= \begin{cases} 1 & d=1 \\ (-1)^r & d=p_1 \cdots p_r \\ 0 & 其他 \end{cases} μ(n)=1(1)r0d=1d=p1pr
    • 若 ( d 1 , d 2 ) = 1 , 则 μ ( d 1 ⋅ d 2 ) = μ ( d 1 ) ⋅ μ ( d 2 ) 若(d_1,d_2)=1,则 \mu(d_1\cdot d_2)=\mu(d_1)\cdot \mu(d_2) (d1d2)=1μ(d1d2)=μ(d1)μ(d2)
  • 单位函数 I ( n ) = ∑ d ∣ n μ ( d ) I(n)=\sum_{d|n}\mu(d) I(n)=dnμ(d)
    I ( n ) = ∑ d ∣ n μ ( d ) = [ n = 1 ] = { 1 n = 1 0 n > 1 I(n)=\sum_{d|n}\mu(d)=[n=1]= \begin{cases} 1 & \text{$n=1$} \\ 0 & \text{$n>1$} \\ \end{cases}\quad I(n)=dnμ(d)=[n=1]={10n=1n>1

例题

  • 例1:求 μ 2 ( n ) / φ ( n ) \mu^2(n)/\varphi(n) μ2(n)/φ(n)的Möbius变换 F ( n ) F(n) F(n)

    ∵ ∑ d ∣ p α μ 2 ( d ) / φ ( d ) = 1 + 1 p ⋅ ( 1 − 1 p ) = p p − 1 = 1 1 − 1 p \because \quad \sum_{d|{p^{\alpha}}}\mu^2(d)/\varphi(d)=1+\frac{1}{p\cdot (1-\frac{1}{p})}=\frac{p}{p-1}=\frac{1}{1-\frac{1}{p}} dpαμ2(d)/φ(d)=1+p(1p1)1=p1p=1p11
    又 ∵ μ 2 ( n ) 、 φ ( n ) 、 μ 2 ( n ) / φ ( n ) 是 积 性 函 数 又 \because \quad \mu^2(n)、\varphi(n)、\mu^2(n)/\varphi(n) 是积性函数 μ2(n)φ(n)μ2(n)/φ(n)
    ∴ F ( n ) = ∑ d ∣ p 1 α 1 ⋯ p r α r μ 2 ( d ) / φ ( d ) = 1 1 − 1 p 1 ⋯ 1 1 − 1 p r = n φ ( n ) \therefore \quad F(n)= \sum_{d|{p_1^{{\alpha}_1}}\cdots{p_r^{{\alpha}_r}}}\mu^2(d)/\varphi(d)=\frac{1}{1-\frac{1}{p_1}}\cdots \frac{1}{1-\frac{1}{p_r}}=\frac{n}{\varphi(n)} F(n)=dp1α1prαrμ2(d)/φ(d)=1p1111pr11=φ(n)n
  • 例2:设 n = p 1 α 1 ⋯ p r α r , n=p_1^{\alpha_1} \cdots p_r^{\alpha_r}, n=p1α1prαr Ω ( n ) \Omega(n) Ω(n)的Möbius变换 F ( n ) F(n) F(n).
    • 不同的素因数个数函数,非积性函数
      ω ( n ) = { r n > 1 0 n = 1 \omega(n) = \begin{cases} r & \text{$n>1$}\\ 0 & \text{$n=1$}\\ \end{cases} \quad\quad\quad ω(n)={r0n>1n=1
    • 素因数个数函数,非积性函数
      Ω ( n ) = { α 1 + ⋯ + α r n > 1 0 n = 1 \Omega(n) = \begin{cases} \alpha_1+\cdots + \alpha_r & \text{$n>1$} \\ 0 & \text{$n=1$} \\ \end{cases}\quad Ω(n)={α1++αr0n>1n=1
    • 除数个数函数,积性函数
      τ ( n ) = τ ( p 1 α 1 ⋯ p r α r ) = ( 1 + α 1 ) ( 1 + α 2 ) ⋯ ( 1 + α r ) \tau(n)=\tau(p_1^{\alpha_1} \cdots p_r^{\alpha_r})=(1+\alpha_1)(1+\alpha_2)\cdots(1+\alpha_r) τ(n)=τ(p1α1prαr)=(1+α1)(1+α2)(1+αr)
      解1:
      F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r Ω ( p 1 e 1 ⋯ p r e r ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r ( e 1 + e 2 + ⋯ + e r ) F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r}) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}(e_1+e_2+\cdots + e_r) F(n)=e1=0α1er=0αrΩ(p1e1prer)=e1=0α1er=0αr(e1+e2++er)
      = ∏ i = 1 r 1 2 α i ( α 1 + 1 ) ⋯ ( α r + 1 ) = 1 2 Ω ( n ) τ ( n ) =\prod_{i=1}^{r}\frac{1}{2}\alpha_i(\alpha_1+1)\cdots (\alpha_r+1)= \frac{1}{2}\Omega(n)\tau(n) =i=1r21αi(α1+1)(αr+1)=21Ω(n)τ(n)
      解2:
      F ( n ) = ∑ e 1 = 0 α 1 ⋯ ∑ e r = 0 α r Ω ( p 1 e 1 ⋯ p r e r ) F(n) =\sum_{e_1=0}^{\alpha_1} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{e_1} \cdots p_r^{e_r}) F(n)=e1=0α1er=0αrΩ(p1e1prer)
      = ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( 1 ⋅ p 2 e 2 ⋯ p r e r ) + ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 1 ⋅ p 2 e 2 ⋯ p r e r ) + ⋯ + ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 1 α 1 ⋅ p 2 e 2 ⋯ p r e r ) =\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1\cdot p_2^{e_2} \cdots p_r^{e_r}) + \cdots +\sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_1^{\alpha_1}\cdot p_2^{e_2} \cdots p_r^{e_r}) =e2=0α2er=0αrΩ(1p2e2prer)+e2=0α2er=0αrΩ(p1p2e2prer)++e2=0α2er=0αrΩ(p1α1p2e2prer)
      = ( 0 + 1 + ⋯ + α 1 ) ⋅ τ ( p 2 e 2 ⋯ p r e r ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) =(0+1+\cdots + \alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =(0+1++α1)τ(p2e2prer)+(1+α1)e2=0α2er=0αrΩ(p2e2prer)
      = α 1 2 ⋅ ( 1 + α 1 ) ⋅ τ ( p 2 e 2 ⋯ p r e r ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) =\frac{\alpha_1}{2} \cdot (1+\alpha_1)\cdot \tau(p_2^{e_2} \cdots p_r^{e_r}) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =2α1(1+α1)τ(p2e2prer)+(1+α1)e2=0α2er=0αrΩ(p2e2prer)
      = α 1 2 ⋅ τ ( n ) + ( 1 + α 1 ) ⋅ ∑ e 2 = 0 α 2 ⋯ ∑ e r = 0 α r Ω ( p 2 e 2 ⋯ p r e r ) = 1 2 Ω ( n ) τ ( n ) =\frac{\alpha_1}{2} \cdot \tau(n) +(1+\alpha_1)\cdot \sum_{e_2=0}^{\alpha_2} \cdots \sum_{e_r=0}^{\alpha_r}\Omega(p_2^{e_2} \cdots p_r^{e_r}) =\frac{1}{2}\Omega(n)\tau(n) =2α1τ(n)+(1+α1)e2=0α2er=0αrΩ(p2e2prer)=21Ω(n)τ(n)
  • 例3:求 φ ( n ) \varphi(n) φ(n)的Möbius变换 F ( n ) F(n) F(n)

    F ( n ) = ∑ d ∣ n φ ( d ) = ∏ i = 1 r ( 1 + φ ( p i ) + ⋯ + φ ( p i α i ) ) = ∏ i = 1 r ( 1 + p i − 1 + p i 2 − p i + ⋯ + p i α i − p i α i − 1 ) = ∏ i = 1 r p i α i = n F(n)=\sum_{d|n}\varphi(d)=\prod_{i=1}^r(1+\varphi(p_i)+\cdots +\varphi(p_i^{\alpha_i}))\\ =\prod_{i=1}^r(1+p_i-1+p_i^2-p_i+\cdots + p_i^{\alpha_i}-p_i^{\alpha_i-1})\\ =\prod_{i=1}^rp_i^{\alpha_i}=n F(n)=dnφ(d)=i=1r(1+φ(pi)++φ(piαi))=i=1r(1+pi1+pi2pi++piαipiαi1)=i=1rpiαi=n

推论1

f ( n ) f(n) f(n)是积性函数,则
∑ d ∣ n μ ( d ) f ( d ) = ∏ p ∣ n ( 1 − f ( p ) ) \sum_{d|n}\mu(d)f(d)=\prod_{p|n}(1-f(p)) dnμ(d)f(d)=pn(1f(p))
∑ d ∣ n μ 2 ( d ) f ( d ) = ∏ p ∣ n ( 1 + f ( p ) ) \sum_{d|n}\mu^2(d)f(d)=\prod_{p|n}(1+f(p)) dnμ2(d)f(d)=pn(1+f(p))

证明

根据定理1(2)可得,
F ( n ) = ∑ d ∣ n μ ( d ) f ( d ) = ∏ i = 1 r ( μ ( 1 ) + μ ( p i ) ⋅ f ( p i ) + ⋯ + μ ( p i α i ) ⋅ f ( p i α i ) ) F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu(1)+\mu(p_i)\cdot f(p_i)+\cdots +\mu(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i})) F(n)=dnμ(d)f(d)=i=1r(μ(1)+μ(pi)f(pi)++μ(piαi)f(piαi))
= ∏ i = 1 r ( 1 − f ( p i ) ) = \prod_{i=1}^{r}(1-f(p_i)) =i=1r(1f(pi))
同理可得:
F ( n ) = ∑ d ∣ n μ ( d ) f ( d ) = ∏ i = 1 r ( μ 2 ( 1 ) + μ 2 ( p i ) ⋅ f ( p i ) + ⋯ + μ 2 ( p i α i ) ⋅ f ( p i α i ) ) F(n)=\sum_{d|n}\mu(d)f(d)= \prod_{i=1}^{r}(\mu^2(1)+\mu^2(p_i)\cdot f(p_i)+\cdots +\mu^2(p_i^{\alpha_i})\cdot f(p_i^{\alpha_i})) F(n)=dnμ(d)f(d)=i=1r(μ2(1)+μ2(pi)f(pi)++μ2(piαi)f(piαi))
= ∏ i = 1 r ( 1 + f ( p i ) ) = \prod_{i=1}^{r}(1+f(p_i)) =i=1r(1+f(pi))

例题

  1. f ( n ) = 1 f(n)=1 f(n)=1,则 ∑ d ∣ n μ ( d ) ⋅ 1 = I ( n ) \sum_{d|n}\mu(d)\cdot 1=I(n) dnμ(d)1=I(n)
  2. f ( n ) = 1 / n f(n)=1/n f(n)=1/n,则 ∑ d ∣ n μ ( d ) / d = φ ( n ) / n \sum_{d|n}\mu(d)/d=\varphi(n)/n dnμ(d)/d=φ(n)/n

定理3

f ( n ) 、 F ( n ) f(n)、F(n) f(n)F(n)是数论函数,那么
F ( n ) = ∑ d ∣ n f ( d ) = ∑ d ∣ n f ( n d ) ⇔ f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( n d ) F ( d ) F(n)=\sum_{d|n}f(d)=\sum_{d|n}f(\frac{n}{d}) \quad \Leftrightarrow \quad f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})F(d) F(n)=dnf(d)=dnf(dn)f(n)=dnμ(d)F(dn)=dnμ(dn)F(d)

证明

关键:“关联约束” → 转化 \overset{\text{转化}}{\rightarrow} 转化 “独立约束”
∑ d ∣ n g ( n d ) ∑ k ∣ d f ( k ) = k ⋅ l = d ∑ k ⋅ l ∣ n g ( n k ⋅ l ) f ( k ) = ∑ k ∣ n f ( k ) ∑ l ∣ n k g ( l ) \sum_{d|n}g(\frac{n}{d})\sum_{k|d}f(k) \overset{k\cdot l=d}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l) dng(dn)kdf(k)=kl=dklng(kln)f(k)=knf(k)lkng(l)
∑ d ∣ n ∑ k ∣ d g ( d k ) f ( k ) = d ⋅ l = n ∑ k ⋅ l ∣ n g ( n k ⋅ l ) f ( k ) = ∑ k ∣ n f ( k ) ∑ l ∣ n k g ( l ) \sum_{d|n}\sum_{k|d}g(\frac{d}{k})f(k) \overset{d\cdot l=n}{=} \sum_{k\cdot l|n}g(\frac{n}{k\cdot l})f(k)=\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}g(l) dnkdg(kd)f(k)=dl=nklng(kln)f(k)=knf(k)lkng(l)

  • 充分性
    ∑ d ∣ n f ( d ) = ∑ d ∣ n { ∑ k ∣ d μ ( d k ) F ( k ) } = ∑ k ∣ n F ( k ) ∑ l ∣ n k μ ( l ) = F ( n ) \sum_{d|n}f(d)=\sum_{d|n}\left\{\sum_{k|d}\mu(\frac{d}{k})F(k)\right\}=\sum_{k|n}F(k)\sum_{l|\frac{n}{k}}\mu(l)=F(n) dnf(d)=dnkdμ(kd)F(k)=knF(k)lknμ(l)=F(n)
  • 必要性
    ∑ d ∣ n μ ( n d ) F ( d ) = ∑ d ∣ n μ ( n d ) ∑ k ∣ d f ( k ) = ∑ k ∣ n f ( k ) ∑ l ∣ n k μ ( l ) = f ( n ) \sum_{d|n}\mu(\frac{n}{d})F(d)=\sum_{d|n}\mu(\frac{n}{d})\sum_{k|d}f(k) =\sum_{k|n}f(k)\sum_{l|\frac{n}{k}}\mu(l)=f(n) dnμ(dn)F(d)=dnμ(dn)kdf(k)=knf(k)lknμ(l)=f(n)

例题

1 = ∑ d ∣ n μ ( d ) τ ( n d ) = ∑ d ∣ n μ ( n d ) τ ( d ) 1=\sum_{d|n}\mu(d)\tau(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\tau(d) 1=dnμ(d)τ(dn)=dnμ(dn)τ(d)
n = ∑ d ∣ n μ ( d ) σ ( n d ) = ∑ d ∣ n μ ( n d ) σ ( d ) n=\sum_{d|n}\mu(d)\sigma(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})\sigma(d) n=dnμ(d)σ(dn)=dnμ(dn)σ(d)
φ ( n ) = ∑ d ∣ n μ ( d ) ( n d ) = ∑ d ∣ n μ ( n d ) d \varphi(n)=\sum_{d|n}\mu(d)(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})d φ(n)=dnμ(d)(dn)=dnμ(dn)d
μ ( n ) n = ∑ d ∣ n μ ( d ) φ ( n d ) / n d = ∑ d ∣ n μ ( n / d [ ] ) φ ( d ) d \frac{\mu(n)}{n}=\sum_{d|n}\mu(d)\varphi(\frac{n}{d})/\frac{n}{d}=\sum_{d|n}\frac{\mu(n/d[])\varphi(d)}{d} nμ(n)=dnμ(d)φ(dn)/dn=dndμ(n/d[])φ(d)

定理4

f ( n ) 、 g ( n ) f(n)、g(n) f(n)g(n) 是数论函数, h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)=\sum_{d|n}f(d)g(\frac{n}{d}) h(n)=dnf(d)g(dn),那么,当 f ( n ) 、 g ( n ) f(n)、g(n) f(n)g(n)都是积性函数时, h ( n ) h(n) h(n)也是积性函数.

证明

  1. f ( 1 ) = g ( 1 ) = 1 → h ( 1 ) = 1 f(1)=g(1)=1 \rightarrow h(1)=1 f(1)=g(1)=1h(1)=1
  2. ( m , n ) = 1 (m,n)=1 (mn)=1
    h ( m n ) = ∑ d ∣ m n f ( m n ) g ( m n d ) = ∑ d 1 d 2 ∣ m n f ( m n ) g ( m n d 1 d 2 ) = ∑ d 1 ∣ m f ( m ) g ( m d 1 ) ⋅ ∑ d 2 ∣ n f ( n ) g ( n d 2 ) = h ( m ) h ( n ) h(mn)=\sum_{d|mn}f(mn)g(\frac{mn}{d})=\sum_{d_1d_2|mn}f(mn)g(\frac{mn}{d_1d_2})=\sum_{d_1|m}f(m)g(\frac{m}{d_1})\cdot \sum_{d_2|n}f(n)g(\frac{n}{d_2})=h(m)h(n) h(mn)=dmnf(mn)g(dmn)=d1d2mnf(mn)g(d1d2mn)=d1mf(m)g(d1m)d2nf(n)g(d2n)=h(m)h(n)
    说明
  • m、n互质,它们的素因子互不相同;
  • d的素因子要么来自m,要么来自n,所以d可以分解成 d 1 、 d 2 d_1、d_2 d1d2,它们的素因子分别来自m和n;
  • 关联约束 → 转化 \overset{\text{转化}}{\rightarrow} 转化 独立约束。

推论2

f ( n ) f(n) f(n) 是积性函数的充分必要条件是它的Möbius变换 F ( n ) F(n) F(n) 是积性函数.

证明

∵ μ ( n ) 、 F ( n ) \because \mu(n)、F(n) μ(n)F(n)是积性函数
∴ \therefore 根据定理4可得, f ( n ) = ∑ d ∣ n μ ( n d ) F ( d ) 是 积 性 函 数 f(n)=\sum_{d|n}\mu(\frac{n}{d})F(d) 是积性函数 f(n)=dnμ(dn)F(d).

例题

提示:求解积性函数F(n)的Möbius逆变换f(n)时,根据 f ( p α ) = F ( p α ) − F ( p α − 1 ) f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1}) f(pα)=F(pα)F(pα1)计算.

  • 例1:求 F ( n ) = n t F(n)=n^t F(n)=nt 的Möbius逆变换.

    ∵ F ( n ) = n t 是 积 性 函 数 \because F(n)=n^t 是积性函数 F(n)=nt
    ∴ f ( p α ) = F ( p α ) − F ( p α − 1 ) = ( p α ) t − ( p α − 1 ) t = p α t ( 1 − p − t ) \therefore f(p^\alpha)=F(p^\alpha)-F(p^{\alpha-1})=(p^\alpha)^t-(p^{\alpha-1})^t =p^{\alpha t}(1-p^{-t}) f(pα)=F(pα)F(pα1)=(pα)t(pα1)t=pαt(1pt)
    ∴ f ( n ) = n t ⋅ ∏ p ∣ n ( 1 − p − t ) \therefore f(n)=n^t\cdot \prod_{p|n}(1-p^{-t}) f(n)=ntpn(1pt)
  • 例2:求 F ( n ) = φ ( n ) F(n)=\varphi(n) F(n)=φ(n) 的Möbius逆变换.

    ∵ F ( n ) = φ ( n ) 是 积 性 函 数 \because F(n)=\varphi(n) 是积性函数 F(n)=φ(n)
    ∴ f ( p α ) = φ ( p α ) − φ ( p α − 1 ) = { p ( 1 − 2 p ) α = 1 p α ( 1 − 1 p ) 2 α ≥ 2 \therefore f(p^\alpha)=\varphi(p^\alpha)-\varphi(p^{\alpha-1})= \begin{cases} p(1-\frac{2}{p}) & \alpha=1\\ p^\alpha(1-\frac{1}{p})^2 & \alpha \geq2 \end{cases} f(pα)=φ(pα)φ(pα1)={p(1p2)pα(1p1)2α=1α2
    ∴ f ( n ) = n ⋅ ∏ p ∣ ∣ n ( 1 − 2 p ) ∏ p 2 ∣ n ( 1 − 1 p ) 2 \therefore f(n)=n\cdot \prod_{p||n}(1-\frac{2}{p})\prod_{p^2|n}(1-\frac{1}{p})^2 f(n)=npn(1p2)p2n(1p1)2
    说明:符号 a k ∣ ∣ b a^k||b akb 表示 b 恰好被 a k a^k ak 整除.

3 Dirichlet卷积

定义

h ( n ) = ∑ d ∣ n f ( n ) g ( n d ) h(n)=\sum_{d|n}f(n)g(\frac{n}{d}) h(n)=dnf(n)g(dn) 是定义在数论函数集合上的一种运算,则称 h ( n ) h(n) h(n) f ( n ) 、 g ( n ) f(n)、g(n) f(n)g(n) 的Dirichlet卷积,记作 h = f ∗ g h=f * g h=fg,且有 h ( n ) = ( f ∗ g ) ( n ) h(n)=(f*g)(n) h(n)=(fg)(n) f ∗ g f * g fg 可以看作一个算子.

性质

  • h ( n ) = ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) = ∑ d ∣ n f ( n d ) g ( d ) = ∑ d ⋅ l = n f ( d ) g ( l ) h(n)=(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})=\sum_{d|n}f(\frac{n}{d})g(d)=\sum_{d\cdot l=n}f(d)g(l) h(n)=(fg)(n)=dnf(d)g(dn)=dnf(dn)g(d)=dl=nf(d)g(l)
  • g ∗ f = f ∗ g g * f =f * g gf=fg
  • g ∗ ( f ∗ k ) = ( g ∗ f ) ∗ k g * (f * k) =(g * f)* k g(fk)=(gf)k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jpphy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值