问题
hdu 1532 Drainage Ditches - https://acm.hdu.edu.cn/showproblem.php?pid=1532
Edmonds-Karp
分析
- 图中的重边容量累加,自环忽略
- bfs 搜索增广路,路径存储在pre中(记录前驱节点),pre兼具标记作用
- flow记录最小剩余容量
- 增广路 不存在的标记是 汇点的前驱不存在
- 从汇点到源点 遍历路径,更新残留网络
代码
#include<bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
const int MXN = 205;
int n, m, g[MXN][MXN], pre[MXN], flow[MXN];
bool bfs(int s, int t, int v){ // 搜索增广路,源点、汇点、顶点数
memset(pre, -1, sizeof pre), memset(flow, inf, sizeof flow);
queue<int> q;
q.push(s), pre[s] = 0; // pre:路径兼标记
while(!q.empty()){
int last = q.front();
if(last == t) break;
for(int i = 1; i <= v; ++i) // v:图的顶点数
if(pre[i] == -1 && g[last][i] > 0)
pre[i] = last, flow[i] = min(flow[last], g[last][i]), q.push(i);
q.pop();
}
return pre[t] != -1;
}
void update(int s, int t){ // 更新残留网络
for(int fa, now = t; now != s; now = fa)
fa = pre[now], g[fa][now] -= flow[t], g[now][fa] += flow[t];
}
int main(){
int u, v, c, maxflow;
while(scanf("%d%d", &n, &m) == 2){
memset(g, 0, sizeof g), maxflow = 0;// g 的初始值:0(并非无穷大)
for(int i = 1; i <= n; ++i) scanf("%d%d%d", &u, &v, &c), g[u][v] += c;
while(bfs(1, m, m)) maxflow += flow[m], update(1, m);
printf("%d\n", maxflow);
}
return 0;
}