题目描述Description
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于再n×n的棋盘上放置n个皇后,任何2个皇后不妨在同一行或同一列或同一斜线上。
输入描述Input Description
给定棋盘的大小n (n≤ 13)
输出描述Output Description
输出整数表示有多少种放置方法。
样例输入Sample Input
8
样例输出Sample Output
92
数据范围及提示Data Size & Hint
n<=13
(时限提高了,不用打表了)
思路:
虽然是赤裸裸的搜索,但是仍有提升的空间——位运算装逼
用x表示放置情况,t表示可以放置的位置,l和r分别表示斜列不能放置的情况
x or l or r再取反,当前位是1表示可以放,反之不能。p枚举空位。
什么?看不懂?这就是位运算的魅力所在。我装逼的目的
源代码/pas:
var
n,ans:longint;
procedure dfs(x,l,r:longint);
var
t,p:longint;
begin
if x<>(1shl n-1) then
begin
t:=(1shl n-1)and((1shl n-1)xor(x or l or r));
while t<>0 do
begin
p:=t and(t xor(1shl n-1)+1);
t:=t-p;
dfs(x or p,(l or p)shl 1,(r or p)shr 1);
end;
end
else
inc(ans);
end;
begin
readln(n);
dfs(0,0,0);
writeln(ans);
end.