Description
农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术。不幸的是,由于工程问题,每个牛栏都不一样。第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们喜欢的那些牛栏中产奶。上个星期,农夫约翰刚刚收集到了奶牛们的爱好的信息(每头奶牛喜欢在哪些牛栏产奶)。一个牛栏只能容纳一头奶牛,当然,一头奶牛只能在一个牛栏中产奶。
给出奶牛们的爱好的信息,计算最大分配方案。
Input
第一行 两个整数,N (0 <= N <= 200) 和 M (0 <= M <= 200) 。N 是农夫约翰的奶牛数量,M 是新牛棚的牛栏数量。
第二行到第N+1行 一共 N 行,每行对应一只奶牛。第一个数字 (Si) 是这头奶牛愿意在其中产奶的牛栏的数目 (0 <= Si <= M) 。后面的 Si 个数表示这些牛栏的编号。牛栏的编号限定在区间 (1..M) 中,在同一行,一个牛栏不会被列出两次。
Output
只有一行。输出一个整数,表示最多能分配到的牛栏的数量。
Analysis
二分图的最大匹配,匈牙利搞定
Code
#include <stdio.h>
#include <cstring>
using namespace std;
struct edge
{
int x,y,next;
}e[40100];
int link[210],ls[40100],maxE=0;
bool vis[210];
void add(int x,int y)
{
e[++maxE]=(edge){x,y,ls[x]};
ls[x]=maxE;
}
int find(int x)
{
for (int i=ls[x];i;i=e[i].next)
{
if (!vis[e[i].y])
{
vis[e[i].y]=true;
if (find(link[e[i].y])||!link[e[i].y])
{
link[e[i].y]=x;
return 1;
}
}
}
return 0;
}
int main()
{
int n,m,ans=0;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
int tmp,y;
scanf("%d",&tmp);
while (tmp--)
{
scanf("%d",&y);
add(i,y);
}
}
for (int i=1;i<=n;i++)
{
memset(vis,false,sizeof(vis));
ans+=find(i);
}
printf("%d\n",ans);
return 0;
}