Description
蛤布斯有n种商品,第i种物品的价格为ai,价值为bi。有m个人来向蛤布斯购买商品,每个人每种物品只能购买一个。第j个人有cj的钱,他会不停选择一个能买得起的价格最高的商品买走(如果有多个则选择价值最高的)。你需要求出每个人购买的物品的价值和。
Input
第一行两个正整数n,m。接下来n行每行两个正整数ai,bi。接下来m行每行一个正整数cj。
Output
m行,每行一个整数表示答案。
Hint
20%的数据,n,m<=1000。
100%的数据,n,m<=100000,ai,bi,cj<=10^12。
Solution
一开始看错题目了囧,以为一件物品买完就没了
排序完直接两个二分,第一个二分能买得起的最大价格,第二个二分能买多少。由于剩下的钱可能还可以继续买,所以要买到不能买为止。由于每一次至少花掉了一半的钱,所以这样会买logC次
Code
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#define rep(i, st, ed) for (int i = st; i <= ed; i += 1)
#define drp(i, st, ed) for (int i = st; i >= ed; i -= 1)
#define erg(i, st) for (int i = ls[st]; i; i = e[i].next)
#define fill(x, t) memset(x, t, sizeof(x))
#define min(x, y) ((x)<(y)?(x):(y))
#define max(x, y) ((x)>(y)?(x):(y))
#define ld long double
#define db double
#define ll long long
#define INF 0x3f3f3f3f
#define N 202001
#define E 1001
#define L 1001
ll a[N], b[N], rank[N], sumb[N], suma[N];
inline ll read() {
ll x = 0, v = 1;
char ch = getchar();
for (; ch < '0' || ch > '9'; v *= (ch == '-')?(-1):(1), ch = getchar());
for (; ch <= '9' && ch >= '0'; (x *= 10) += ch - '0', ch = getchar());
return x * v;
}
inline bool cmp(int x, int y) {
return a[x] > a[y] || a[x] == a[y] && b[x] > b[y];
}
int main(void) {
int n = read();
int m = read();
rep(i, 1, n) {
a[i] = read();
b[i] = read();
rank[i] = i;
}
std:: sort(rank + 1, rank + n + 1, cmp);
rep(i, 1, n) {
suma[i] = suma[i - 1] + a[rank[i]];
sumb[i] = sumb[i - 1] + b[rank[i]];
}
rep(i, 1, m) {
ll c = read();
ll ans = 0;
while (c >= a[rank[n]]) {
int l = 1;
int r = n;
int st = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (a[rank[mid]] > c) {
l = mid + 1;
} else {
st = mid;
r = mid - 1;
}
}
l = st;
r = n;
int ed = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (suma[mid] - suma[st - 1] > c) {
r = mid - 1;
} else {
ed = mid;
l = mid + 1;
}
}
ans += sumb[ed] - sumb[st - 1];
c -= suma[ed] - suma[st - 1];
if (ed == n) {
break;
}
}
printf("%lld\n",ans);
// std:: cout << ans << std:: endl;
}
return 0;
}