51nod 1258 序列求和 V4

Solution


T(n) = n^k,S(n) = T(1) + T(2) + …… T(n)。给出n和k,求S(n)。
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。

1 <= T <= 500
1 <= N <= 10^18, 1 <= K <= 50000

Solution


最裸的自然数幂和问题,回忆一下在jz时巨佬们讲授的拉格朗日插值法
考虑k=1的时候式子就是等差数列求和,有 s=(n+1)n2 s = ( n + 1 ) n 2
考虑k=2的时候有 s=n(n+1)(2n+1)6 s = n ( n + 1 ) ( 2 n + 1 ) 6
考虑k=3的时候有 s=[n(n+1)(2n+1)6]2 s = [ n ( n + 1 ) ( 2 n + 1 ) 6 ] 2
可以发现答案是一个k+1次多项式(大胆猜想感性求证),那么暴力前面k+2个点插值求第n个点即可

拉格朗日插值:对于一个n次多项式可以用n+1个点拟合,那么多项式f(x)一定可以表示为 f(x)=nk=0bk(x)yk=xxixkxiyk f ( x ) = ∑ k = 0 n b k ( x ) ∗ y k = ∑ ∏ x − x i ∏ x k − x i ∗ y k
思想实际上是很单纯的,我们强制在 x1 x 1 处取 y1 y 1 ,在 x2 x 2 处取 y2 y 2 以此类推就得到了这样的多项式。可以发现乘除都是连续的一段数字,那么实际上可以O(n)搞完

Code


#include <stdio.h>
#include <string.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)

typedef long long LL;
const int MOD=1000000007;
const int N=500005;

LL a[N+1],b[N+1],c[N+1],inv[N+1];

LL ksm(LL x,LL dep) {
    if (dep==0) return 1;
    if (dep==1) return x;
    LL tmp=ksm(x,dep/2);
    if (dep%2) return tmp*tmp%MOD*x%MOD;
    return tmp*tmp%MOD;
}

void solve(LL n,LL m) {
    if (n<=m+2) {
        printf("%lld\n", a[n]);
        return ;
    }
    n=n%MOD;
    b[0]=c[m+3]=1;
    rep(i,1,m+2) b[i]=b[i-1]*(n-i)%MOD;
    drp(i,m+2,1) c[i]=c[i+1]*(n-i)%MOD;
    LL ans=0,rec=1;
    rep(i,2,m+2) rec=rec*(1-i)%MOD;
    rec=ksm(rec,MOD-2);
    rep(i,1,m+2) {
        ans=(ans+a[i]*b[i-1]%MOD*c[i+1]%MOD*rec%MOD)%MOD;
        rec=rec*(i-m-2)%MOD*inv[i]%MOD;
    }
    printf("%lld\n", (ans+MOD)%MOD);
}

int main(void) {
    rep(i,1,N) inv[i]=ksm(i,MOD-2);
    int T; scanf("%d",&T);
    while (T--) {
        LL n,m; scanf("%lld%lld",&n,&m);
        rep(i,1,m+2) a[i]=(a[i-1]+ksm(i,m))%MOD;
        solve(n,m);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值