51Nod 1258 序列求和 V4(组合数学+FFT)

25 篇文章 0 订阅
2 篇文章 0 订阅

Description

T(n)=nkS(n)=T(1)+T(2)+......T(n) T ( n ) = n k , S ( n ) = T ( 1 ) + T ( 2 ) + . . . . . . T ( n ) 。给出 n n k,求 S(n) S ( n )

例如 k=2n=5S(n)=12+22+32+42+52=55 k = 2 , n = 5 , S ( n ) = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 = 55

由于结果很大,输出 S(n) Mod 1000000007 S ( n )   M o d   1000000007 的结果即可。

Input

1 1 行:一个数T,表示后面用作输入测试的数的数量。
2T+1 2 − T + 1 行:每行 2 2 个数,n,k中间用空格分割。

(1T500,1n1018,1k5104) ( 1 ≤ T ≤ 500 , 1 ≤ n ≤ 10 18 , 1 ≤ k ≤ 5 ⋅ 10 4 )

Output

T T 行,对应S(n) Mod 1000000007的结果。

Sample Input

3
5 3
4 2
4 1

Sample Output

225
30
10

Solution

求自然数幂和,即 Sk(n)=i=1nik S k ( n ) = ∑ i = 1 n i k ,则有 Sk(n)=1k+1i=0k+1Cik+1Bk+1i(n+1)i S k ( n ) = 1 k + 1 ∑ i = 0 k + 1 C k + 1 i B k + 1 − i ( n + 1 ) i ,伯努利数 O(k2) O ( k 2 ) 预处理显然不行,但由于 i=0nCin+1Bi=(n+1)!i=0nBii!1(n+1i)!=0 ∑ i = 0 n C n + 1 i B i = ( n + 1 ) ! ∑ i = 0 n B i i ! 1 ( n + 1 − i ) ! = 0 ,而 B0=1 B 0 = 1 ,故多项式 f(x)=Bii!xi f ( x ) = ∑ B i i ! x i 即为多项式 g(x)=(n+1i)!xi g ( x ) = ∑ ( n + 1 − i ) ! x i 的逆,用多项式求逆即可 O(klog2k) O ( k l o g 2 k ) 预处理出 B0,...,Bk+1 B 0 , . . . , B k + 1 ,单次查询时间复杂度 O(k) O ( k )

Code

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
#define maxfft 131072+5
#define mod 1000000007
int add(int x,int y)
{
    x+=y;
    if(x>=mod)x-=mod;
    return x;
}
int mul(int x,int y)
{
    ll z=1ll*x*y;
    return z-z/mod*mod;
}
int Pow(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)ans=mul(ans,a);
        a=mul(a,a);
        b>>=1;
    }
    return ans;
}
const double pi=acos(-1.0);
struct cp
{
    double a,b;
    cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
    cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
    cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
    cp operator *(const double &o)const {return (cp){a*o,b*o};}
    cp operator !() const{return (cp){a,-b};}
}w[maxfft];
int pos[maxfft];
void fft_init(int len)
{
    int j=0;
    while((1<<j)<len)j++;
    j--;
    for(int i=0;i<len;i++)
        pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(cp *x,int len,int sta)
{
    for(int i=0;i<len;i++)
        if(i<pos[i])swap(x[i],x[pos[i]]);
    w[0]=(cp){1,0};
    for(int i=2;i<=len;i<<=1)
    {
        cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
        for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
        for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
        for(int j=0;j<len;j+=i)
        {
            cp *a=x+j,*b=a+(i>>1);
            for(int l=0;l<i>>1;l++)
            {
                cp o=b[l]*w[l];
                b[l]=a[l]-o;
                a[l]=a[l]+o;
            }
        }
    }
    if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;
}
cp x[maxfft],y[maxfft],z[maxfft];
void FFT(int *a,int *b,int n,int m,int *c)
{
    int len=1;
    while(len<n+m)len<<=1;
    fft_init(len);
    for(int i=0;i<len;i++)
    {
        int aa=i<n?a[i]:0,bb=i<m?b[i]:0;
        x[i]=(cp){(aa>>15),(aa&32767)},y[i]=(cp){(bb>>15),(bb&32767)};
    }
    fft(x,len,1),fft(y,len,1);
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=((x[i]+!x[j])*(y[i]-!y[j])+(x[i]-!x[j])*(y[i]+!y[j]))*(cp){0,-0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod;
        ta=(ta<<15)%mod;
        c[i]=ta;
    }
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=(x[i]-!x[j])*(y[i]-!y[j])*(cp){-0.25,0}+(x[i]+!x[j])*(y[i]+!y[j])*(cp){0,0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod,tb=(ll)(z[i].b+0.5)%mod;
        ta=(ta+(tb<<30))%mod;
        c[i]=(c[i]+ta)%mod;
    }
}
int temp1[maxfft];
void Poly_Inv(int *poly,int n,int *ans)
{
    ans[0]=Pow(poly[0],mod-2);
    for(int i=2;i<=n;i<<=1)
    {
        FFT(poly,ans,i,i/2,temp1);
        FFT(ans,temp1+i/2,i/2,i/2,temp1);
        for(int j=0;j<i/2;j++)ans[j+i/2]=temp1[j]==0?0:mod-temp1[j];
    }
}
int inv[maxfft],fact[maxfft],B[maxfft];
void init(int n=50001)
{
    fact[0]=1;
    for(int i=1;i<=n;i++)fact[i]=mul(i,fact[i-1]);
    inv[1]=1;
    for(int i=2;i<=n;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
    inv[0]=1;
    for(int i=1;i<=n;i++)inv[i]=mul(inv[i-1],inv[i]);
    int len=1;
    while(len<n)len<<=1;
    Poly_Inv(inv+1,len,B);
    for(int i=0;i<=n;i++)B[i]=mul(B[i],fact[i]);
}
int C(int n,int m)
{
    if(m<0||m>n)return 0;
    return mul(fact[n],mul(inv[m],inv[n-m]));
}
int main()
{
    init();
    int T,k;
    ll n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%d",&n,&k);
        int ans=0;
        for(int i=1;i<=k+1;i++)ans=add(ans,mul(mul(C(k+1,i),B[k+1-i]),Pow((n+1)%mod,i)));
        ans=mul(ans,Pow(k+1,mod-2));
        printf("%d\n",ans);
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值