bzoj1010 [HNOI2008]玩具装箱toy

Description


P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

1<=N<=50000,1<=L,Ci<=10^7

Solution


设f[i]表示前i个物品的最优解,方程就能写成
f[i]=min{f[j]+(ij1+sum[i]sum[j]L)2} f [ i ] = m i n { f [ j ] + ( i − j − 1 + s u m [ i ] − s u m [ j ] − L ) 2 } ,其中sum[i]表示前缀和
方便起见令 g[i]=sum[i]+ic=L+1 g [ i ] = s u m [ i ] + i , c = L + 1
那么 f[i]=min{f[j]+(g[i]g[j]c)2} f [ i ] = m i n { f [ j ] + ( g [ i ] − g [ j ] − c ) 2 }
我们任取三个点i、j、k,且k< j< i,对于i而言从j转移更优的情况当且仅当满足
f[j]+(g[i]g[j]c)2f[k]+(g[i]g[k]c)2 f [ j ] + ( g [ i ] − g [ j ] − c ) 2 ≤ f [ k ] + ( g [ i ] − g [ k ] − c ) 2
随意化简一下得到 f[j]+(g[j]+c)2f[k](g[k]+c)22(g[j]g[k])g[i] f [ j ] + ( g [ j ] + c ) 2 − f [ k ] − ( g [ k ] + c ) 2 2 ( g [ j ] − g [ k ] ) ≤ g [ i ]
注意这里分母的正负号,i、j、k的大小顺序,以此判断一下斜率是递增还是递减的,然后就能根据套路上单调队列惹

感觉今天才对这类题有了比较清晰的认识,看来还是题做得不够

Code


#include <stdio.h>
#include <string.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define sqr(x) ((x)*(x))

typedef long long LL;
typedef double db;
const int N=50005;

int a[N],c;
int queue[N];
LL f[N],g[N];

db slope(int k,int j) {
    db ret=(f[j]-f[k]+sqr(g[j]+c)-sqr(g[k]+c));
    ret=ret/(2.0*(g[j]-g[k]));
    return ret;
}

void solve(int n) {
    int head=1,tail=0;
    queue[++tail]=0;
    rep(i,1,n) {
        while (head<tail&&slope(queue[head],queue[head+1])<=g[i]) head++;
        f[i]=f[queue[head]]+sqr(g[i]-g[queue[head]]-c);
        while (head<tail&&slope(queue[tail-1],queue[tail])>slope(queue[tail],i)) tail--;
        queue[++tail]=i;
    }
}

int main(void) {
    int n; scanf("%d%d",&n,&c); c++;
    rep(i,1,n) scanf("%d",&a[i]);
    rep(i,1,n) g[i]=g[i-1]+a[i];
    rep(i,1,n) g[i]=g[i]+i;
    solve(n);
    printf("%lld\n", f[n]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值