bzoj3307 雨天的尾巴 线段树合并

版权声明:虽然是个蒟蒻但是转载还是要说一声的哟 https://blog.csdn.net/jpwang8/article/details/80684776

Description


N个点,形成一个树状结构。有M次发放,每次选择两个点x,y
对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成
所有发放后,每个点存放最多的是哪种物品。

1<=N,M<=100000
1<=a,b,x,y<=N
1<=z<=10^9

Solution


一个非常直观的方法就是轻重链剖分然后树状数组套权值线段树,这样非常无脑而且好写

另一个也比较直观的方法就是对于一个操作(x,y,z)在lca和fa[lca]处打标记,在x和y处打标记,然后遍历树的时候每个节点分别继承所有儿子的线段树的并即可,这样也非常无脑

第一次打线段树合并,纪念一下

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)

const int LIM=1000000000;
const int N=100005;

struct edge {int y,next;} e[N*2];
struct treeNode {int l,r,max;} t[N*34];

std:: vector <int> tag[N];

int dep[N],fa[N][19],root[N];
int ans[N],ls[N],edCnt,n,T,tot;

int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
    return x*v;
}

void add_edge(int x,int y) {
    e[++edCnt]=(edge) {y,ls[x]}; ls[x]=edCnt;
    e[++edCnt]=(edge) {x,ls[y]}; ls[y]=edCnt;
}

void modify(int &now,int tl,int tr,int x,int v) {
    if (!now) t[now=++tot]=(treeNode) {0,0,0};
    if (tl==tr) {
        t[now].max+=v;
        return ;
    }
    int mid=(tl+tr)>>1;
    if (x<=mid) modify(t[now].l,tl,mid,x,v);
    else modify(t[now].r,mid+1,tr,x,v);
    t[now].max=std:: max(t[t[now].l].max,t[t[now].r].max);
}

int merge(int x,int y,int tl,int tr) {
    if (!x||!y) return x+y;
    if (tl==tr) {
        t[x].max+=t[y].max;
        return x;
    }
    int mid=(tl+tr)>>1;
    t[x].l=merge(t[x].l,t[y].l,tl,mid);
    t[x].r=merge(t[x].r,t[y].r,mid+1,tr);
    t[x].max=std:: max(t[t[x].l].max,t[t[x].r].max);
    return x;
}

int get_lca(int x,int y) {
    if (dep[y]>dep[x]) std:: swap(x,y);
    drp(i,18,0) if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
    if (x==y) return x;
    drp(i,18,0) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}

void dfs(int now) {
    rep(i,1,18) fa[now][i]=fa[fa[now][i-1]][i-1];
    for (int i=ls[now];i;i=e[i].next) {
        if (e[i].y==fa[now][0]) continue;
        fa[e[i].y][0]=now;
        dep[e[i].y]=dep[now]+1;
        dfs(e[i].y);
    }
}

int query(int now,int tl,int tr) {
    if (tl==tr) return tl;
    int mid=(tl+tr)>>1;
    if (t[t[now].l].max==t[now].max) return query(t[now].l,tl,mid);
    else return query(t[now].r,mid+1,tr);
}

void solve(int now) {
    for (int i=ls[now];i;i=e[i].next) {
        if (e[i].y==fa[now][0]) continue;
        solve(e[i].y);
        root[now]=merge(root[now],root[e[i].y],0,LIM);
    }
    for (int i=0;i<tag[now].size();i++) {
        if (tag[now][i]>0) modify(root[now],0,LIM,tag[now][i],1);
        if (tag[now][i]<0) modify(root[now],0,LIM,-tag[now][i],-1);
    }
    ans[now]=query(root[now],0,LIM);
}

int main(void) {
    freopen("data.in","r",stdin);
    freopen("myp.out","w",stdout);
    n=read(),T=read();
    rep(i,2,n) add_edge(read(),read());
    dep[1]=1; dfs(1);
    for (;T--;) {
        int x=read(),y=read(),z=read();
        int lca=get_lca(x,y);
        tag[lca].push_back(-z);
        tag[fa[lca][0]].push_back(-z);
        tag[x].push_back(z);
        tag[y].push_back(z);
    }
    solve(1);
    rep(i,1,n) printf("%d\n", ans[i]);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页