Description
给你一个有n个点的树,每个点的包括一个位运算opt和一个权值x,位运算有&,l,^三种,分别用1,2,3表示。
每次询问包含三个数x,y,z,初始选定一个数v。然后v依次经过从x到y的所有节点,每经过一个点i,v就变成v opti
xi,所以他想问你,最后到y时,希望得到的值尽可能大,求最大值?给定的初始值v必须是在[0,z]之间。每次修
改包含三个数x,y,z,意思是把x点的操作修改为y,数值改为z
n , q ≤ 1 0 5 , k ≤ 64 n,q\le 10^5,k\le 64 n,q≤105,k≤64
Solution
无脑题
一个非常显然的做法是我们从高到低贪心,这样做是
O
(
n
l
o
g
3
n
)
O(nlog^3n)
O(nlog3n)的
注意到k的范围非常nice,于是用一个unsignedLL压起来就可以了。具体说就是记s0为全部是0的数字经过操作后会得到什么,s1同理。
然后就是非常经典的带方向的树链剖分了,合并路径的时候注意一下就行了
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stack>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)
#define fill(x,t) memset(x,t,sizeof(x))
#define fi first
#define se second
typedef std:: pair <int,int> pair;
typedef unsigned long long LL;
const int N=200005;
struct edge {int y,next;} e[N*2];
struct Mat {LL s0,s1;} ;
struct TreeNode {
Mat left,righ;
} t[N<<2];
int dep[N],fa[N],size[N],bl[N],dfn[N],pos[N];
int ls[N],op[N],tot,edCnt,k;
LL w[N],bin[85],lim;
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void add_edge(int x,int y) {
e[++edCnt]=(edge) {y,ls[x]}; ls[x]=edCnt;
e[++edCnt]=(edge) {x,ls[y]}; ls[y]=edCnt;
}
Mat merge(Mat a,Mat b) {
Mat res;
res.s0=(a.s0&b.s1)|((lim^a.s0)&b.s0);
res.s1=(a.s1&b.s1)|((lim^a.s1)&b.s0);
return res;
}
void dfs1(int x) {
size[x]=1;
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y==fa[x]) continue;
fa[e[i].y]=x; dep[e[i].y]=dep[x]+1;
dfs1(e[i].y); size[x]+=size[e[i].y];
}
}
void dfs2(int x,int up) {
bl[x]=up; int mx=0;
pos[x]=++pos[0];
dfn[pos[0]]=x;
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y!=fa[x]&&size[e[i].y]>size[mx]) mx=e[i].y;
}
if (!mx) return ;
dfs2(mx,up);
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y!=fa[x]&&e[i].y!=mx) dfs2(e[i].y,e[i].y);
}
}
void modify(int now,int tl,int tr,int x) {
if (tl==tr) {
if (op[dfn[tl]]==1) t[now].left=t[now].righ=(Mat) {0,w[dfn[tl]]};
else if (op[dfn[tl]]==2) t[now].left=t[now].righ=(Mat) {w[dfn[tl]],lim};
else t[now].left=t[now].righ=(Mat) {w[dfn[tl]],lim^w[dfn[tl]]};
return ;
}
int mid=(tl+tr)>>1;
if (x<=mid) modify(now<<1,tl,mid,x);
else modify(now<<1|1,mid+1,tr,x);
t[now].left=merge(t[now<<1].left,t[now<<1|1].left);
t[now].righ=merge(t[now<<1|1].righ,t[now<<1].righ);
}
void build(int now,int tl,int tr) {
if (tl==tr) {
if (op[dfn[tl]]==1) t[now].left=t[now].righ=(Mat) {0,w[dfn[tl]]};
else if (op[dfn[tl]]==2) t[now].left=t[now].righ=(Mat) {w[dfn[tl]],lim};
else t[now].left=t[now].righ=(Mat) {w[dfn[tl]],lim^w[dfn[tl]]};
return ;
}
int mid=(tl+tr)>>1;
build(now<<1,tl,mid); build(now<<1|1,mid+1,tr);
t[now].left=merge(t[now<<1].left,t[now<<1|1].left);
t[now].righ=merge(t[now<<1|1].righ,t[now<<1].righ);
}
Mat query(int now,int tl,int tr,int l,int r,int opt) {
if (l<=tl&&tr<=r) return (!opt)?(t[now].left):(t[now].righ);
Mat qx=(Mat) {0,lim},qy=(Mat) {0,lim};
int mid=(tl+tr)>>1;
if (l<=mid) qx=query(now<<1,tl,mid,l,r,opt);
if (mid+1<=r) qy=query(now<<1|1,mid+1,tr,l,r,opt);
if (opt==0) return merge(qx,qy);
else return merge(qy,qx);
}
int get_lca(int x,int y) {
for (;bl[x]^bl[y];x=fa[bl[x]]) if (dep[bl[x]]<dep[bl[y]]) std:: swap(x,y);
return dep[x]<dep[y]?x:y;
}
void solve(int x,int y,LL z) {
int lca=get_lca(x,y); LL ans=0;
Mat res=(Mat) {0,lim};
for (;bl[x]^bl[lca];x=fa[bl[x]]) {
res=merge(res,query(1,1,pos[0],pos[bl[x]],pos[x],1));
}
res=merge(res,query(1,1,pos[0],pos[lca],pos[x],1));
std:: stack <pair> stack;
for (;bl[y]^bl[lca];y=fa[bl[y]]) {
stack.push(pair(pos[bl[y]],pos[y]));
}
if (y!=lca) stack.push(pair(pos[lca]+1,pos[y]));
while (!stack.empty()) {
pair top=stack.top(); stack.pop();
res=merge(res,query(1,1,pos[0],top.fi,top.se,0));
}
drp(i,k-1,0) {
if (bin[i]&res.s0) ans+=bin[i];
else if ((bin[i]&res.s1)&&bin[i]<=z) {
ans+=bin[i]; z-=bin[i];
}
}
printf("%llu\n", ans);
}
int main(void) {
int n=read(),m=read(); k=read();
bin[0]=1; rep(i,1,k) bin[i]=bin[i-1]*2LL;
lim=bin[k]-1;
rep(i,1,n) scanf("%d%llu",&op[i],&w[i]);
rep(i,2,n) add_edge(read(),read());
dfs1(dep[1]=1); dfs2(1,1);
build(1,1,n);
for (;m--;) {
int opt,x,y; LL z; scanf("%d%d%d%llu",&opt,&x,&y,&z);
if (opt==1) solve(x,y,z);
else {
op[x]=y,w[x]=z;
modify(1,1,n,pos[x]);
}
}
return 0;
}