五、相关与回归分析

本文介绍了变量间的关系类型,如函数关系和相关关系,重点讨论了相关关系的描述与测度,包括散点图和相关系数。相关系数的性质和显著性检验有助于理解变量间的线性关系。接着,文章深入探讨了一元线性回归分析,包括一元线性回归模型、最小二乘估计、拟合优度和显著性检验。最后,讨论了如何利用回归方程进行点估计和区间估计,为预测和控制提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变量间关系的度量

一、变量间的关系

变量间的关系形态可分为两种类型:函数关系、相关关系。
函数关系:一 一对应的确定关系。
相关关系:变量之间存在的不确定的数量关系,即 一个变量的取值不能由另一个变量唯一确定。

二、相关关系的描述与测度

相关分析是对两个变量之间线性关系的描述与度量,解决的问题
  1、如果存在关系,它们之间是什么样的关系?
  2、变量之间的关系强度如何?
  3、样本所反映的变量之间的关系能否代表总体变量之间的关系?
  
步骤如下:
  绘制散点图来判断变量之间的关系形态,如果是线性关系,利用相关系数测度两个变量之间的关系强度,最后对相关系数进行显著性检验,以判断样本所反应的关系能否用来代表两个变量总体上的关系。

(一)散点图
散点图:用坐标的水平轴代表自变量X,纵轴代表因变量Y,每组数据在坐标系中用一个点表示,n组数据在坐标系中形成的n个点称为散点,由坐标及散点形成的二维数据坐标图。
散点图描述了两个变量之间的大致关系形态以及关系强度。
  如果变量之间的关系近似地表现为一条直线,称线性相关
  如果变量之间的关系近似地表现为一条曲线,称非线性或者曲线相关
  如果两个变量的观测点狠分散,无任何规则,则表示变量之间没有相关关系
  在线性相关中,两个变量的变动方向相同----正相关
  在线性相关中,两个变量的变动方向相反----负相关

不同形态的散点图如下:
在这里插入图片描述
eg:不良贷款与以下因素是否有关,以及关系。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
  从以上的各散点图可知,不良贷款与贷款余额、累计应收贷款、贷款项目个数、固定资产投资额之间具有一定的线性相关。与贷款余额的线性关系比较密切。
  
(二)相关系数
为准确度量两个变量之间关系的密切程度,需计算相关系数
相关系数:根据样本数据计算的对两个变量之间线性关系强度的度量值,r表示。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值