动态规划-矩阵链乘

问题描述

给定n个矩阵构成的一个链给定{A1,A2,…,An},其中i=1,2,...,n.矩阵Ai的维数为pi-1*pi,如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 

最优子结构

对乘积A1A2...An的任意加括号方法都会将序列在某个地方分成两部分,也就是最后一次乘法计算的地方,我们将这个位置记为k,也就是说首先计算A1...Ak和Ak+1...An,然后再将这两部分的结果相乘。
最优子结构如下:假设A1A2...An的一个最优加括号把乘积在Ak和Ak+1间分开,则前缀子链A1...Ak的加括号方式必定为A1...Ak的一个最优加括号,后缀子链同理。
一开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。

状态转移方程


代码实现

#include<iostream>
using namespace std;
//p为矩阵链,p[0],p[1]代表第一个矩阵,p[1],p[2]代表第二个矩阵,length为p的长度
//所以如果有六个矩阵,length=7,m为存储最优结果的二维矩阵,t为存储选择最优结果路线的
//二维矩阵
void MatrixChainOrder(int *p,int (*m)[10],int (*t)[10],int length)
{
	int n=length-1;
	int i,j,k,q,num=0;
	//A[i][i]只有一个矩阵,所以相乘次数为0,即m[i][i]=0;
	for(i=1;i<length;i++)
	{
		m[i][i]=0;
	}
	//i代表矩阵链的长度,i=2表示有两个矩阵相乘时如何划分
	for(i=2;i<=n;i++)
	{
		//j表示从第j个矩阵开始的i个矩阵如何划分是最优
		for(j=1;j<=n-i+1;j++)
		{
			//k为从第j个数i个矩阵就是k,从j到k表示他们之间的i个矩阵如何划分
			k=j+i-1;
			//m[j][k]存储了从j到k使用最佳划分所得到的最优结果
			m[j][k]=0x7fffffff;
			//q为介于j到k-1之间的数,目的是利用q对j到k之间的矩阵进行试探性的划分,
			//从而找到最优划分,这是一种遍历性的试探。
			for(q=j;q<=k-1;q++)
			{
				num=m[j][q]+m[q+1][k]+p[j-1]*p[q]*p[k];
				if(num<m[j][k])
				{
					m[j][k]=num;
					t[j][k]=q;
				}
			}
		}
	}
}
void PrintAnswer(int(*t)[10],int i,int j)
{
	if(i==j)
	{
		cout<<"A"<<i;
	}
	else
	{
		cout<<"(";
		PrintAnswer(t,i,t[i][j]);
		PrintAnswer(t,t[i][j]+1,j);
		cout<<")";
	}

}
int main()
{
	int p[7]={30,35,15,5,10,20,25};
	int m[10][10],t[10][10];
	MatrixChainOrder(p,m,t,7);
	MatrixChainOrder(p,m,t,7);
	PrintAnswer(t,1,6);
	cout<<endl;
	return 0;
}

运行结果:



参考:算法导论十五章--矩阵链乘法-http://blog.csdn.net/liuzhanchen1987/article/details/7835053


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
矩阵链乘问题是一个经典的动态规划问题,其目标是找到一种最优的方式来计算给定的一组矩阵的连乘积。这个问题可以通过动态规划算法来解决。 动态规划算法的基本思想是将问题分解成更小的子问题,并使用已知的信息来计算更大的问题。在矩阵链乘问题,我们可以将问题分解成计算两个矩阵的乘积的子问题,并使用已知的信息来计算更大的问题。 具体来说,我们可以定义一个二维数组m,其m[i][j]表示从第i个矩阵到第j个矩阵的最小计算代价。我们还可以定义一个二维数组s,其s[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序。 接下来,我们可以使用以下递归公式来计算m和s: m[i][j] = 0 (i = j) m[i][j] = min{m[i][k] + m[k+1][j] + ri*ck*cm} (i <= k < j) 其,ri和ci分别表示第i个矩阵的行数和列数,cm表示两个矩阵相乘的计算代价。 使用上述递归公式,我们可以计算出所有的m[i][j]和s[i][j]。最终,我们可以通过s数组来构造出最优的计算次序,并使用m数组来计算最小的计算代价。 下面是一个Python实现的例子: ```python def matrix_chain_order(p): n = len(p) - 1 m = [[0] * n for i in range(n)] s = [[0] * n for i in range(n)] for l in range(2, n+1): for i in range(n-l+1): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s def print_optimal_parens(s, i, j): if i == j: print("A{}".format(i+1), end='') else: print("(", end='') print_optimal_parens(s, i, s[i][j]) print_optimal_parens(s, s[i][j]+1, j) print(")", end='') p = [30, 35, 15, 5, 10, 20, 25] m, s = matrix_chain_order(p) print_optimal_parens(s, 0, len(p)-2) print("\nMinimum cost:", m[0][len(p)-2]) ``` 输出结果为: ``` ((A1(A2A3))((A4A5)A6)) Minimum cost: 15125 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值