leetcode每日一题—1310.子数组异或查询

题目:

有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]。

对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor … xor arr[Ri])作为本次查询的结果。

并返回一个包含给定查询 queries 所有结果的数组。
在这里插入图片描述
解答:

class Solution:
    def xorQueries(self, arr: List[int], queries: List[List[int]]) -> List[int]:
        n=len(arr)
        tmp=arr[0]
        encode=[tmp]
        for i in range(1,n):
            tmp^=arr[i]
            encode.append(tmp)
        res=[]
        for val in queries:
            start=val[0]
            end=val[1]
            if start==end:
                res.append(arr[end])
            elif start==0:
                res.append(encode[end])
            else:
                res.append(encode[end]^encode[start-1])
        return res
【源码免费下载链接】:https://renmaiwang.cn/s/gbu02 grep命令是一个强大的文本处理工具,在Linux系统中被广泛使用。它能够有效地搜索文件中的特定模式,并提供灵活的匹配方式以满足不同需求。作为全名是Global Regular Expression Print的软件,grep采用基于posix标准的正则表达式系统,支持基本功能和扩展特性。 在实际操作中,用户可以通过调整选项来控制搜索结果的表现形式。例如,“-c”选项可以仅显示符合条件的结果数量,“-i”则能实现不区分大小写的匹配效果。“-n”帮助展示包含目标模式的具体行号,“-s”则用于隐藏错误信息,而“-v”则与之相反,只呈现不符合条件的行。 正则表达式的核心在于元字符的应用。这些特殊符号赋予了grep强大的搜索能力,从简单的字符匹配到复杂的模式构建都能胜任。例如,“^”和“$”分别标识文本的起始和结束位置;方括号内部的字符可以进行范围匹配;转义操作允许用户解除默认含义的影响。 实践过程中,用户会发现部分正则表达式功能仅限于grep的基本版本,而更复杂的扩展需要借助egrep或pcre库的支持。此外,结合perl语言风格的正则表达式接口也能进一步提升搜索效率。 得注意的是,在使用这些工具时,开发者需特别留意特殊字符的转义规则以及括号内的范围限定。通过深入理解和灵活运用这些机制,用户可以充分发挥grep的强大功能,完成各种复杂的文本处理任务。 综上所述,熟练掌握grep命令及其背后的正则表达式知识将显著提升文本处理效率和准确性。希望本文能为您提供有价的参考和指导。
【源码免费下载链接】:https://renmaiwang.cn/s/uc6y9 在现代生活中,路由器扮演着不可或缺的角色,整合了多项服务器功能以极大地方便了网络管理与维护。然而,这种集成也可能引入网络安全性和稳定性的潜在风险。当路由器无法正确分配IP地址时,可能导致网络故障并影响局域网的正常运作。本文将深入探讨如何解决此类问题。遇到多数客户端无法获取IP地址或登录速度缓慢的情况,建议首先运行该系统的`ipconfig`命令检查配置设置。如果发现客户端无法从路由器获得IP地址,并排除了基本故障后,应关注路由器的状态。若交换机指示灯正常且无拥堵或死机现象,则可能与路由器的 DHCP(动态主机配置协议)服务出现故障有关。 DHCP 作为局域网中自动分配IP地址的关键组件,确保网络设备正确连接上因特网至关重要。当客户端首次接入网络时,会向 DHCP服务器发送一个 DHCP discover广播包以获取IP地址。在Windows系统中,默认情况下,若1秒内未收到响应,客户端将在几秒后尝试(共4次)。如果始终无法获得响应,将显示错误信息并提示用户等待5分钟后重新连接。当DHCP服务器无响应或未被客户端接受时,也会导致IP分配失败。深入分析 DHCP工作流程可发现潜在问题可能源于服务器未能做出适当回应或丢失了部分响应包。在确认网络硬件配置无误(如网线连通)后,问题很可能与 DHCP 服务器相关。大量客户端求可能导致服务器资源耗尽,从而降低响应速度并引发网络拥塞现象。为提升整体服务质量,理想做法是增强服务器性能或增加服务器数量,通过专设不同功能的服务器来优化负载分配。对于预算有限的机构(如学校),购买额外设备可能不切实际,在这种情况下需要对现有架构进行优化以避免过载问题。潜在解决方案包括限制客户端连接数、调整 DHCP 租约时间或升级路由器硬件和软件性能,同时建议定期维护服务器以确保其
<think>好的,用户想了解数组异或操作的实现和应用场景。首先,我需要回忆一下异或操作的基本特性,因为这是理解其应用的基础。记得异或操作符是位运算的一种,符号通常是^,特性是相同为0,不同为1。还有几个重要性质,比如交换律、结合律,以及a ^ a = 0和a ^ 0 = a。这些特性在数组操作中特别有用。 然后,用户提到了数组异或操作,可能是指对数组中的元素进行异或运算,或者利用异或来解决数组相关的问题。常见的应用场景之一是找出数组中唯一出现一次的数字,其他数字都出现两次。这种情况下,异或可以高效解决,因为成对的数字异或后会抵消为0,剩下的就是那个单独的数字。这个例子在引用[1]中也有提到,需要引用一下。 接下来,实现方面可能需要考虑不同的编程语言,比如C、Python或者使用numpy库。例如,在C语言中,可以直接用循环遍历数组,逐个异或;而在Python中,可以用reduce函数来累积异或结果。另外,numpy.bitwise_xor函数可以处理数组的按位异或操作,这在引用[2]中有示例,应该提到这一点。 另一个应用场景是子数组异或查询的问题,比如LeetCode的题目1310,引用[3]中提到了使用前缀异或数组来高效处理多个查询。需要解释前缀异或的概念,以及如何通过预处理数组来快速得到任意子数组异或结果。这涉及到前缀和的思想,但应用于异或运算。 此外,可能还有一些其他应用,比如数据加密中的简单异或加密,或者交换两个变量的而不使用临时变量。不过数据加密的例子在引用[2]里已经提到,可以引用一下。交换变量虽然经典,但可能用户更关注数组操作,所以可以简要带过。 在实现部分,需要给出不同语言的代码示例。例如,C语言的循环实现,Python中使用reduce,以及numpy的bitwise_xor用法。同时,对于前缀异或数组,可以给出一个Python的实现示例,并解释其原理。 需要注意的是,用户可能对异或操作的具体实现细节和优化方法感兴趣,比如如何处理大规模数组,或者如何利用异或的特性来简化算法。此外,可能还要提到异或操作的时间复杂度,通常是O(n),因为需要遍历数组一次,空间复杂度可能为O(1)或者O(n)取决于具体应用。 最后,生成相关问题时要围绕实现细节、优化方法、其他应用场景以及不同语言中的处理方式来提问,帮助用户深入理解。同时确保引用正确,每个引用对应到相应的内容,比如引用[1]对应找出单独数字,引用[2]对应numpy和加密,引用[3]对应前缀异或查询。</think>### 数组异或操作的实现与应用场景 #### 一、异或操作的核心特性 异或操作符($\oplus$)的数学定义为: $$a \oplus b = (\neg a \land b) \lor (a \land \neg b)$$ 其核心特性包括: 1. **交换律**:$a \oplus b = b \oplus a$ 2. **结合律**:$(a \oplus b) \oplus c = a \oplus (b \oplus c)$ 3. **自反性**:$a \oplus a = 0$ 4. **恒等性**:$a \oplus 0 = a$ 这些特性是异或操作在数组处理中广泛应用的基础[^1]。 #### 二、实现方式与代码示例 ##### 1. 基础实现(C语言) ```c int array_xor(int* arr, int size) { int result = 0; for(int i=0; i<size; i++){ result ^= arr[i]; } return result; } ``` 时间复杂度为$O(n)$,空间复杂度$O(1)$。 ##### 2. Python高阶实现 ```python from functools import reduce arr = [3, 1, 2, 1, 2] result = reduce(lambda x,y: x^y, arr) ``` ##### 3. 使用numpy库 ```python import numpy as np arr = np.array([5, 3, 5]) result = np.bitwise_xor.reduce(arr) # 输出3[^2] ``` #### 三、典型应用场景 1. **唯一数字检测** 在数组$[4,1,2,1,2]$中,所有元素异或后结果为$4$,可快速找出唯一出现一次的数字[^1]。 2. **子数组异或查询优化** 通过构建前缀异或数组: $$prefix[i+1] = prefix[i] \oplus arr[i]$$ 查询区间$[L,R]$的异或可优化为: $$prefix[L] \oplus prefix[R+1]$$ 该方案将多次查询的时间复杂度从$O(nq)$优化到$O(n+q)$[^3]。 3. **数据加密** 通过密钥与数据的按位异或实现简单加密: ```python data = np.array([0b1100, 0b1010]) key = 0b1111 encrypted = np.bitwise_xor(data, key) # 加密 decrypted = np.bitwise_xor(encrypted, key) # 解密[^2] ``` #### 四、进阶应用 1. **数组去重检测** 结合哈希表可检测重复模式 2. **图像处理** 在OpenCV中用于图像混合 3. **网络协议** 校验和计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值