Matlab学习心得

本文分享了在Matlab中进行批量处理试验数据的心得,包括如何批量导出word图表以及如何使用eval和num2str函数处理变量a1,a2,a3,将字符串转化为程序运行,以实现数据的高效分析。" 127594788,13573037,解决GitHack工具Python版本报错问题,"['git', 'Python']
摘要由CSDN通过智能技术生成

Matlab学习心得

批量处理试验数据

使用到的新内容包括:
1、批量导出word图:创建一个新的word文档,并将绘制出来的figure粘贴到word中。
2、批量处理变量a1,a2,a3,将字符串转化为程序语言运行,使用了eval函数和num2str函数。eval([’ h=plot(ff,b’,num2str(num),’(:,3*i-j),pl(2));’]);

clc
clear
close all
try
     %若word服务器已经打开,返回其句柄Word
      Word = actxGetRunningServer('Word.Application');
catch
      %创建一个Microsoft Word服务器,返回句柄Word
      Word = actxserver('Word.Application');
end
set(Word, 'Visible', 1); %或Word.Visible=1;
documents = Word.Documents;
 if exist('wordname','file')
    document = invoke(documents,'Open','wordname');
 else
    document = invoke(documents, 'Add');
 end

filename1= 'FRF2.xlsx';%刚度为1e10
filename2='FRF5.xlsx';%刚度为1e8
xlRange = 'A64:BS1088';
pl=['r';'g';'b';'k';'y';'m'];
%%跨距1086(原跨距)
A1= xlsread(filename1,1,xlRange); %0r/min纵向激励
A2= xlsread(filename1,2,xlRange); %0r/min垂向激励
A3= xlsread(filename1,3,xlRange); %0r/min水平激励
A4= xlsread(filename1,4,xlRange); %300r/min纵向激励
A5= xlsread(filename1,5,xlRange); %300r/min垂向激励
A6= xlsread(filename1,6,xlRange); %300r/min水平激励
%跨距975
B1= xlsread(filename2,1,xlRange); %0r/min纵向激励
B2= xlsread(filename2,2,xlRange); %0r/min垂向激励
B3= xlsread(filename2,3,xlRange); %0r/min水平激励
B4= xlsread(filename2,4,xlRange); %300r/min纵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值