目标检测中的FPN模块

FPN模块通过高层特征反哺低层,平衡语义与分辨率。在目标检测中,它与RPN和detection head结合,通常共享参数。RPN生成的proposal在特定层级的特征图上计算,如112*112的proposal在p3上。对于ViT在语义分割中的应用,beit实现将特征放大后再通过FPN结构,以适应FPN的金字塔结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FPN 模块的结构很简单,主要思想是高层特征反哺低层特征,达到语义与分辨率的平衡。

当用于目标检测时,一个问题是如何与 RPN 和 detection head 结合。在原始的 fast-rcnn RPN 中(参考的是霹雳吧啦的视频)是在每个 FPN 后都加上 RPN+detection head,并且它们共享参数。

另一个问题是 RPN 生成的 proposal 最后在哪个特征图上计算,作者提供了一个公式来 navigate。比如 proposal 是 112\*112,那么会计算得到 3,也就是说在 p3 上计算。(什么是 p3 参考下面第二张图)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值