K尾相等数
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
1
-
描述
-
输入一个自然数K(K>1),如果存在自然数M和N(M>N),使得K^M和K^N均大于等于1000,且他们的末尾三位数相等,则称M和N是一对“K尾相等数”。下面请编程求出M+N最小的K尾相等数。
-
输入
-
第一行包含一个正整数T,T<10000,表示有T组数据;
随后有N行,每行包括一个整数K(K<2*10^10);
输出
- 对于输入的每个整数K,输出对应的M+N的最小值; 样例输入
-
1 2
样例输出
-
120
来源
//思路是每次相乘后都取余,以余数为索引将指数存到数组中,若余数相同的存在,则直接返回当前指数与对应数组元素的和。经典题。 #include <stdio.h> #include <string.h> int sign[1001]; //索引 int f(long long k){ memset(sign, 0, sizeof(sign)); long long t; int i = 1, j; t = k; while(k < 1000){ k *= t; ++i; } sign[k %= 1000] = i++; for(j = 1; j <= 1001; ++j, ++i) if(sign[k = (k * t) % 1000]) return i + sign[k]; else sign[k] = i; } int main(){ int t; long long k; scanf("%d", &t); while(t-- && scanf("%lld", &k)) printf("%d\n", f(k)); return 0; } #include <stdio.h> int Findk(int k) { int ans[1000]={0}; //记录数据 int count = 0,s = 1; while(s < 1000) // 遍历出第一个大于1000的数 { s *= k; count++; } s %= 1000; k %= 1000; ans[s] = count; while(true) // 需找出现的第二个数,即尾数相等。 { s = s * k % 1000; count++; if(!ans[s]) ans[s] = count; else return ans[s] + count; } } int main() { int n,k; scanf("%d",&n); while(n--) { scanf("%d",&k); printf("%d\n",Findk(k)); } } //最优代码 #include<stdio.h> #include<string.h> int main() { int t,i,j,flag,a[1001]; long k,sum; // freopen("f:\\input.txt","r",stdin); scanf("%d%*c",&t); while(t--) { scanf("%ld",&k); sum = 1;flag = 0; memset(a,0,sizeof(a)); for(i = 0;sum < 1000;i++) sum *= k; for(j = 0,sum %= 1000,k %= 1000;j < 1000;j++,i++) { (a[sum] != 0)?(printf("%d\n",a[sum]+i),flag = 1):(a[sum] = i,sum = sum * k % 1000); if(flag == 1) break; } } return 0; }
-
第一行包含一个正整数T,T<10000,表示有T组数据;