Problem Description
Given an N*N*N cube A, whose elements are either 0 or 1. A[i, j, k] means the number in the i-th row , j-th column and k-th layer. Initially we have A[i, j, k] = 0 (1 <= i, j, k <= N).
We define two operations, 1: “Not” operation that we change the A[i, j, k]=!A[i, j, k]. that means we change A[i, j, k] from 0->1,or 1->0. (x1<=i<=x2,y1<=j<=y2,z1<=k<=z2).
0: “Query” operation we want to get the value of A[i, j, k].
We define two operations, 1: “Not” operation that we change the A[i, j, k]=!A[i, j, k]. that means we change A[i, j, k] from 0->1,or 1->0. (x1<=i<=x2,y1<=j<=y2,z1<=k<=z2).
0: “Query” operation we want to get the value of A[i, j, k].
Input
Multi-cases.
First line contains N and M, M lines follow indicating the operation below.
Each operation contains an X, the type of operation. 1: “Not” operation and 0: “Query” operation.
If X is 1, following x1, y1, z1, x2, y2, z2.
If X is 0, following x, y, z.
First line contains N and M, M lines follow indicating the operation below.
Each operation contains an X, the type of operation. 1: “Not” operation and 0: “Query” operation.
If X is 1, following x1, y1, z1, x2, y2, z2.
If X is 0, following x, y, z.
Output
For each query output A[x, y, z] in one line. (1<=n<=100 sum of m <=10000)
Sample Input
2 5 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 2 2 0 1 1 1 0 2 2 2
Sample Output
1 01
每次都是一段区间的反转操作,问一个点的状态。
通过三维树状数组实现,对于每个区间操作稍作转化。
一维区间的[l,r]反转可以看做是a[l]+1和a[r+1]-1,树状数组求和的性质便完成了区间的操作。
三维的只要通过容斥原理就可以了。
#include<iostream> #include<algorithm> #include<math.h> #include<cstdio> #include<string> #include<string.h> using namespace std; const int maxn = 105; const int low(int x){ return (x&-x); } int f[maxn][maxn][maxn], u, n, m, x, y, z, i, j, k; void add(int x, int y, int z, int w) { for (int i = x; i <= n; i = i + low(i)) for (int j = y; j <= n; j = j + low(j)) for (int k = z; k <= n; k = k + low(k)) f[i][j][k] += w; } int sum(int x, int y, int z) { int tot = 0; for (int i = x; i > 0; i = i - low(i)) for (int j = y; j > 0; j = j - low(j)) for (int k = z; k > 0; k = k - low(k)) tot += f[i][j][k]; return tot; } int main(){ while (~scanf("%d%d", &n, &m)) { memset(f, 0, sizeof(f)); while (m--) { scanf("%d%d%d%d", &u, &x, &y, &z); if (!u) printf("%d\n", sum(x, y, z) & 1); else { scanf("%d%d%d", &i, &j, &k); add(x, y, z, 1); add(x, y, k + 1, 1); add(x, j + 1, z, 1); add(i + 1, y, z, 1); add(x, j + 1, k + 1, 1); add(i + 1, j + 1, z, 1); add(i + 1, y, k + 1, 1); add(i + 1, j + 1, k + 1, 1); } } } return 0; }