Problem Description
我们定义“区间的价值”为一段区间的最大值*最小值。
一个区间左端点在 L ,右端点在 R ,那么该区间的长度为 (R−L+1) 。
现在聪明的杰西想要知道,对于长度为 k 的区间,最大价值的区间价值是多少。
当然,由于这个问题过于简单。
我们肯定得加强一下。
我们想要知道的是,对于长度为 1∼n 的区间,最大价值的区间价值分别是多少。
样例解释:
长度为 1 的最优区间为 2−2 答案为 6∗6
长度为 2 的最优区间为 4−5 答案为 4∗4
长度为 3 的最优区间为 2−4 答案为 2∗6
长度为 4 的最优区间为 2−5 答案为 2∗6
长度为5的最优区间为 1−5 答案为 1∗6
一个区间左端点在 L ,右端点在 R ,那么该区间的长度为 (R−L+1) 。
现在聪明的杰西想要知道,对于长度为 k 的区间,最大价值的区间价值是多少。
当然,由于这个问题过于简单。
我们肯定得加强一下。
我们想要知道的是,对于长度为 1∼n 的区间,最大价值的区间价值分别是多少。
样例解释:
长度为 1 的最优区间为 2−2 答案为 6∗6
长度为 2 的最优区间为 4−5 答案为 4∗4
长度为 3 的最优区间为 2−4 答案为 2∗6
长度为 4 的最优区间为 2−5 答案为 2∗6
长度为5的最优区间为 1−5 答案为 1∗6
Input
多组测试数据
第一行一个数 n(1≤n≤100000) 。
第二行 n 个正整数 (1≤ai≤109) ,下标从 1 开始。
由于某种不可抗力, ai 的值将会是 1∼109 内<b style="color:red;">随机产生</b>的一个数。(除了样例)
第一行一个数 n(1≤n≤100000) 。
第二行 n 个正整数 (1≤ai≤109) ,下标从 1 开始。
由于某种不可抗力, ai 的值将会是 1∼109 内<b style="color:red;">随机产生</b>的一个数。(除了样例)
Output
输出共
n
行,第
i
行表示区间长度为
i
的区间中最大的区间价值。
Sample Input
5 1 6 2 4 4
Sample Output
36 16 12 12 6
因为数据是随机的,所以可以水过去。
用单调队列的n*n的方法。
#include<map> #include<set> #include<queue> #include<stack> #include<cmath> #include<cstdio> #include<bitset> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int maxn = 2e5 + 10; int n, a[maxn]; int p1[maxn],p2[maxn]; int l,r,mx,my; int q,h,qq,hh; LL ans; int main() { while (~scanf("%d",&n)) { l=r=1; for (int i=1;i<=n;i++) { scanf("%d",&a[i]); if (a[i]>a[l]) { l=r=i; mx=my=a[i]; } } printf("%I64d\n",ans=(LL)a[l]*a[r]); for (int i=2;i<=n;i++) { if (l>1&&a[l-1]<=my&&a[l-1]>=mx) { --l; printf("%I64d\n",ans); continue; } if (r<n&&a[r+1]<=my&&a[r+1]>=mx) { ++r; printf("%I64d\n",ans); continue; } q=qq=0; h=hh=-1; ans=0; for (int j=1;j<=n;j++) { while (q<=h&&a[p1[h]]<a[j]) --h; p1[++h]=j; while (qq<=hh&&a[p2[hh]]>a[j]) --hh; p2[++hh]=j; while (p1[q]+i<=j) ++q; while (p2[qq]+i<=j) ++qq; if (j<i) continue; if ((LL)a[p1[q]]*a[p2[qq]]>ans) { ans=(LL)a[p1[q]]*a[p2[qq]]; l=j-i+1; r=j; my=a[p1[q]]; mx=a[p2[qq]]; } } printf("%I64d\n",ans); } } return 0; }
这个问题可以从每个数来考虑,假设他是最小的数,那么左右分别可以到哪里,然后计算最大值,根据区间的递减性质更新回去即可。#pragma comment(linker, "/STACK:1024000000,1024000000") #include<map> #include<set> #include<queue> #include<stack> #include<cmath> #include<cstdio> #include<bitset> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; typedef __int64 LL; const int low(int x) { return x&-x; } const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int maxn = 1e5 + 10; int T, n, a[maxn], L[maxn], R[maxn], dp[maxn][20], lg[maxn]; LL ans[maxn]; int get(int l, int r) { int k = lg[r - l + 1]; return max(dp[l][k], dp[r - (1 << k) + 1][k]); } int main() { lg[1] = 0; for (int i = 2; i < maxn; i++) lg[i] = lg[i >> 1] + 1; while (scanf("%d", &n) != EOF) { for (int i = 1; i <= n; i++) scanf("%d", &a[i]), dp[i][0] = a[i], ans[i] = 0; for (int i = 1; (1 << i) <= n; i++) { for (int j = 1; j + (1 << i) - 1 <= n; j++) { dp[j][i] = max(dp[j][i - 1], dp[j + (1 << i - 1)][i - 1]); } } stack<int> p; for (int i = 1; i <= n; i++) { while (!p.empty() && a[p.top()] > a[i]) { R[p.top()] = i - 1; p.pop(); } p.push(i); } while (!p.empty()) R[p.top()] = n, p.pop(); for (int i = n; i; i--) { while (!p.empty() && a[p.top()] > a[i]) { L[p.top()] = i + 1; p.pop(); } p.push(i); } while (!p.empty()) L[p.top()] = 1, p.pop(); for (int i = 1; i <= n; i++) { int len = R[i] - L[i] + 1; ans[len] = max(ans[len], 1LL * a[i] * get(L[i], R[i])); } for (int i = n - 1; i; i--) ans[i] = max(ans[i], ans[i + 1]); for (int i = 1; i <= n; i++) printf("%I64d\n", ans[i]); } return 0; }