HDU 5696 区间的价值

5 篇文章 0 订阅
Problem Description
我们定义“区间的价值”为一段区间的最大值*最小值。

一个区间左端点在 L ,右端点在 R ,那么该区间的长度为 (RL+1)

现在聪明的杰西想要知道,对于长度为 k 的区间,最大价值的区间价值是多少。

当然,由于这个问题过于简单。

我们肯定得加强一下。

我们想要知道的是,对于长度为 1n 的区间,最大价值的区间价值分别是多少。

样例解释:

长度为 1 的最优区间为 22  答案为 66

长度为 2 的最优区间为 45  答案为 44

长度为 3 的最优区间为 24  答案为 26

长度为 4 的最优区间为 25  答案为 26

长度为5的最优区间为 15  答案为 16
 

Input
多组测试数据

第一行一个数 n(1n100000)

第二行 n 个正整数 (1ai109) ,下标从 1 开始。

由于某种不可抗力, ai 的值将会是 1109 内<b style="color:red;">随机产生</b>的一个数。(除了样例)
 

Output
输出共 n 行,第 i 行表示区间长度为 i 的区间中最大的区间价值。
 

Sample Input
  
  
5 1 6 2 4 4
 

Sample Output
  
  
36 16 12 12 6

因为数据是随机的,所以可以水过去。

用单调队列的n*n的方法。

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int maxn = 2e5 + 10;
int n, a[maxn];
int p1[maxn],p2[maxn];
int l,r,mx,my;
int q,h,qq,hh;
LL ans;

int main()
{
    while (~scanf("%d",&n))
    {
        l=r=1;
        for (int i=1;i<=n;i++) 
        {
            scanf("%d",&a[i]);    
            if (a[i]>a[l]) 
            {
                l=r=i;
                mx=my=a[i];
            }
        }
        printf("%I64d\n",ans=(LL)a[l]*a[r]);
        for (int i=2;i<=n;i++)
        {
            if (l>1&&a[l-1]<=my&&a[l-1]>=mx) 
            {
                --l; printf("%I64d\n",ans); continue;
            }
            if (r<n&&a[r+1]<=my&&a[r+1]>=mx)
            {
                ++r; printf("%I64d\n",ans); continue;
            }
            q=qq=0; h=hh=-1; ans=0;
            for (int j=1;j<=n;j++)
            {
                while (q<=h&&a[p1[h]]<a[j]) --h;
                p1[++h]=j;
                while (qq<=hh&&a[p2[hh]]>a[j]) --hh;
                p2[++hh]=j;
                while (p1[q]+i<=j) ++q;
                while (p2[qq]+i<=j) ++qq;
                if (j<i) continue;
                if ((LL)a[p1[q]]*a[p2[qq]]>ans)
                {
                    ans=(LL)a[p1[q]]*a[p2[qq]];
                    l=j-i+1;  r=j;
                    my=a[p1[q]]; mx=a[p2[qq]];
                }
            }
            printf("%I64d\n",ans); 
        }
    }
    return 0;
}

这个问题可以从每个数来考虑,假设他是最小的数,那么左右分别可以到哪里,然后计算最大值,根据区间的递减性质更新回去即可。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
typedef __int64 LL;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 10;
int T, n, a[maxn], L[maxn], R[maxn], dp[maxn][20], lg[maxn];
LL ans[maxn];

int get(int l, int r)
{
	int k = lg[r - l + 1];
	return max(dp[l][k], dp[r - (1 << k) + 1][k]);
}

int main()
{
	lg[1] = 0;
	for (int i = 2; i < maxn; i++) lg[i] = lg[i >> 1] + 1;
	while (scanf("%d", &n) != EOF)
	{
		for (int i = 1; i <= n; i++) scanf("%d", &a[i]), dp[i][0] = a[i], ans[i] = 0;
		for (int i = 1; (1 << i) <= n; i++)
		{
			for (int j = 1; j + (1 << i) - 1 <= n; j++)
			{
				dp[j][i] = max(dp[j][i - 1], dp[j + (1 << i - 1)][i - 1]);
			}
		}
		stack<int> p;
		for (int i = 1; i <= n; i++)
		{
			while (!p.empty() && a[p.top()] > a[i])
			{
				R[p.top()] = i - 1; p.pop();
			}
			p.push(i);
		}
		while (!p.empty()) R[p.top()] = n, p.pop();
		for (int i = n; i; i--)
		{
			while (!p.empty() && a[p.top()] > a[i])
			{
				L[p.top()] = i + 1; p.pop();
			}
			p.push(i);
		}
		while (!p.empty()) L[p.top()] = 1, p.pop();
		for (int i = 1; i <= n; i++)
		{
			int len = R[i] - L[i] + 1;
			ans[len] = max(ans[len], 1LL * a[i] * get(L[i], R[i]));
		}
		for (int i = n - 1; i; i--) ans[i] = max(ans[i], ans[i + 1]);
		for (int i = 1; i <= n; i++) printf("%I64d\n", ans[i]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值